
PHYSICAL REVIEW E MARCH 1999VOLUME 59, NUMBER 3
Unsupervised and supervised learning: Mutual information
between parameters and observations

Didier Herschkowitz* and Jean-Pierre Nadal
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We study the mutual information between parameter and data for a family of supervised and unsupervised
learning tasks. The parameter is a possibly, but not necessarily, high-dimensional vector. We derive exact
bounds and asymptotic behaviors for the mutual information as a function of the data size and of some
properties of the probability of the data given the parameter. We compare these exact results with the predic-
tions of replica calculations. We briefly discuss the universal properties of the mutual information as a function
of data size.@S1063-651X~99!00403-1#
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I. INTRODUCTION

We consider the very general problem of finding t
structure underlying a set of data, also calledexamples, pat-
terns, or training set. The parametric approach assumes t
the structure of the probability density function~PDF! the
patterns have been sampled from is known. Only its par
eters have to be determined given the examples. We con
bothsupervisedandunsupervisedlearning paradigms within
the same framework of parameter estimation. The proces
determining the parameters is calledunsupervised learning
when the goal is to estimate the probability distribution fro
the observed data only. In the case ofsupervised learning
one is given additional information about the data, that
each training example is labeled. Several type of labels
be specified, and we will consider two kinds of labels:
cluster label, which, in the case of a mixture density, ind
cates from which PDF the pattern has been produ
~to which cluster the pattern belongs!; and a class label,
which is a classification of the observed pattern~e.g., it is the
binary classification produced by a teacher perceptron!. In all
these cases, the PDF of the data and/or the labels ca
characterized by a parameter, a vector in a possibly h
dimensional space, and the goal is to estimate the param
from the observed data.

Recent results on parameter estimation show that themu-
tual information between data and parameter is a relev
tool to derive optimal performances@1–5#. Based on
Shannon information quantities~see, e.g.,@6#!, it quantifies
the intuitive idea that our knowledge of the parameter va
is limited if we have a finite amount of data. This quantity
independent of any specific algorithm used to estimate
parameter. The best possible estimator of the parameter i
one that is able to extract all this information hidden in t
data. If such an estimator exists, its performance should
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be related to the mutual information. In fact, one should
able to compute the best possible performance from the
tual information without knowing in advance which algo
rithms will allow us to achieve this performance. In the co
text of supervised learning, the mutual information is sho
in @7# to have, within the Bayesian framework, the meani
of a cumulative entropic error.

In addition, any model of parameter estimation can
interpreted in the neural coding framework,via the duality
shown in@8#: the parameter plays the role of the stimulus a
each pattern of the training set is then the activity of a cod
cell. In this context, the mutual information characterizes
quality of the coding system. Its maximization has been p
posed as a possible principle for neural organization in liv
animals~see, e.g.,@9,10#! and is related to coding based o
redundancy reduction~see, e.g.,@11,12#!.

All this motivates the study of the mutual informatio
between data and parameter, which we do in the pre
paper for a family of unsupervised and supervised learn
tasks. We address the question of the behavior of the mu
information as a function of the dimension of parame
space, size of data set, and properties of the PDF gener
the data given the parameter. It is already known that u
versal scaling laws exist for the asymptotic performance
estimators; e.g., the generalization error decreases asp/N for
p@N in the case of smooth distributions@13#. Our main
concern will be to see what types of universal propert
exist for the mutual information.

Some of the results we present are very general, but
detailed calculations and analysis will be done for a fam
of models where the data structure can be characterized
single symmetry-breaking orientationB along which the pat-
tern distribution is nonuniform. Models of this family hav
been studied extensively with thereplica methodin the
framework of statistical mechanics@14–17#. As we will see,
theself-averagedfree energy associated toGibbs learningis
directly related to the mutual information; hence, it conta
the typical properties of the system.

After introducing the general framework of unsupervis
learning ~Sec. II!, and introducing the mutual informatio
between data and parameters, we show how the computa
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PRE 59 3345UNSUPERVISED AND SUPERVISED LEARNING: . . .
of the information gain in a supervised learning task can
reduced to that of the mutual information in a related un
pervised problem. As a result we can then work on a fam
of parameter estimation tasks that can be seen as uns
vised learning problems, some of them having in addition
alternative interpretation as a supervised learning proble

For this family of models we present first exact resu
~Sec. III!: a linear upper bound valid for any data size a
any parameter dimension; an upper bound for the cas
supervised learning also for anyN and p; the asymptotic
behavior of the mutual information for smooth distributio
in the limit of the data sizep very large compared toN, the
parameter dimension, which here is not necessarily large
the latter case we make use of general results relating
mutual information to theFisher information@1,4,5#. Finally
we make use of tools, introduced in@7# in the context of the
standard supervised learning framework, to derive upper
lower bounds for both unsupervised learning and superv
learning in the case of patterns correlated with the parame
A direct application of the techniques of@7# provide the be-
havior of the mutual informations in the large data size lim
In addition, we show that one can get also explicit upper a
lower bounds valid in the largeN limit at any given value of
a5p/N ~the derivation of these bounds is detailed in t
Appendix!.

Next, in Sec. IV with the relationship mentioned abo
and to be detailed below between the mutual information
the free energy, we make use of replica calculations alre
published, giving their interpretation in terms of mutual i
formation. We also present new results, on both previou
studied and not previously studied models. These replica
culations are expected to be valid in the case where the n
ber p of observed patterns is of order of the dimensionN of
the parameter space, in the limit of very largeN. We con-
sider first unsupervised learning, with both smooth and d
continuous PDF, and we then deduce the relevant infor
tion quantities for the associated supervised learning mod
We compare the predictions of the replica calculations m
under the replica symmetry ansatz with the exact bounds
asymptotic behaviors presented in Sec. III. In Sec. V
illustrate all these results on specific models. Finally in S
VI we use information quantities to derive bounds on perf
mance of specific estimators. In the Conclusion we disc
general features of parameter estimation in view of the
sults obtained on the particular class of models studied in
present paper.

II. MUTUAL INFORMATION
FOR A PARAMETER ESTIMATION TASK

A. Model family

We first introduce the general setup from the point
view of unsupervised learning. We assume that a set of pa
ternsX5$jm%m51

p is generated byp independent sampling
from a nonuniform probability distribution

P~XuB!5 )
m51

p

p~jmuB!, ~1!

where B5$B1 ,...,BN% represents the symmetry-breakin
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orientation. For the family of models we are considering,
probability of a given patternj can always be written in the
form

p~juB!5
1

AN 2p
expS 2

j 2

2
2V~l! D , ~2!

whereN is the dimension of the space and

l5B–j/iBi ~3!

is the overlap between the pattern and the direction. Acco
ing to Eq.~2!, the patterns have normal, unit variance dist
bution, i.e., exp(2x2/2)/A2p onto theN21 directions or-
thogonal to B and the distribution of the overlap in th
symmetry-breaking direction is given by

P~l!5
1

A2p
expS 2

l2

2
2V~l! D . ~4!

The potentialV(l) characterizes the structure of the data
the symmetry-breaking direction. In particular, ifV(l)[0,
the patterns are uniformly distributed in all the directions a
no special orientation can be detected. The potentialV(l)
satisfy the normalization condition

E Dl exp@2V~l!#51, ~5!

where Dl5dl exp(2l2/2)/A2p is the Gaussian measure
Here and in the following, when not explicitly written, inte
grals go from2` to 1`.

As justified within the Bayesian and statistical physi
frameworks, one has to consider aprior distribution on the
parameter space,r~B!. Convenient choices for detailed ca
culations in specific models are, e.g., the Gaussian p
r(B)5exp(2B2/2)/AN 2p or the uniform distribution on the
unit sphere. From the point of view of inference, there
however, an optimal prior, the one that maximizes the m
tual information@1,4#.

B. Unsupervised learning

The mutual informationI (X;B) between the example
and the parameter~here the symmetry breaking directionB!
is ~see, e.g.,@6#!

I ~X;B!5H~X!2H~XuB!, ~6!

where

H~X!52E dX P~X!lnP~X! ~7!

is the pattern entropy according to their probability

P~X!5E dB r~B!P~XuB! ~8!

and

H~XuB!52E dB dXr~B!P~XuB!lnP~XuB! ~9!
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is the equivocation: the pattern entropy conditional toB, av-
eraged over the parameter distribution. Here and in the
lowing, the logarithm are neperian. The unit of the mutu
information is then thenat. The mutual information repre
sents the mean amount of information the dataX convey
about the variableB.

For the model family we are considering defined by E
~2!, the mutual information can be rewritten

I ~X;B!52p^V~l!&2^^ ln Z~X!&&, ~10!

where

Z~X![E dB r~B!expS 2 (
m51

p

V~lm!D . ~11!

Here and in all this paper the brackets^¯& stand for the
average over the overlap distributionP(l), Eq. ~4!, and
^^¯&& the average over the pattern distributionP~X!, Eq. ~8!.
One should note that2^V(l)& is a positive quantity. In the
statistical physics literature, the quantity2 ln Z(X) is the
‘‘free energy’’ andZ the ‘‘partition function.’’ From related
studies in the field of statistical physics of disordered s
tems, one expects the free energy to be a self-avera
quantity, that is2(1/N) ln Z(X);^^2(1/N) ln Z(X)&& in the
largeN limit. This means that, in this limit, the properties o
the system depend no more on the specific set of patternX
but on the patterns distributionP~X! only. It is interesting
that it is precisely this quantity, the averaged free ener
that appears in the mutual information. This shows that,
one hand, it is indeed the mutual information that conta
the typical behavior of the system, and on the other ha
that the mean free energy is a relevant quantity even
finite N.

A remark on our notation is in order. Since in the follow
ing we will consider relationships between the mutual inf
mation associated with different, but related, models, we w
attach to the mutual information associated with each mo
a subscript referring to the particular probability with whic
the patterns have been generated. In particular, when
considering asmoothpotential ~that is, such thatV is as
regular as needed!, we will write the mutual information~10!
associated with the model~2! as I P(X;B) where the sub-
script P refers to the smooth distributionP(l), Eq. ~4!.

C. Supervised learning

We now turn to the case ofsupervised learningtasks. We
will consider two kinds of supervised learning: ‘‘cluste
learning’’ and ‘‘class learning.’’ We show how they are r
lated to smooth and discontinuous unsupervised learn
tasks, respectively.

1. Cluster learning

We consider a mixture density made of two smoo
PDF’s such that the data will appear as two clusters symm
ric about the origin: the symmetry-breaking direction is t
direction of the axis joining the centers of the two cluste
To each cluster is associated a labelA561. Each pattern is
generated in a two step procedure: first one chooses a cl
with equal probability and then the pattern is generated fr
l-
l
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the corresponding cluster distribution. Denoting byA
5$Am%m51

p the set of cluster labels, the model we are co
sidering is thus

P~A,XuB!5 )
m51

p
1
2 ~dAm,11dAm,21!p~jmuAmB!. ~12!

We assumep(juB) to have a smooth overlap distributio
P(l).

In the context of supervised learning, the patternsX are
given with their cluster labelA5$Am%m51

p . We will denote
by I AP(A,X;B) the information the pair of variables~A,X!
gives about the symmetry-breaking axisB.

Now a patternj coming from the clusterp(juAB) gives
the same amount of information about the directionB than a
patternAj coming from the clusterp(AjuB). One can thus
proceed as if one was given the set of patterns$Amjm% gen-
erated from a single distributionA511: one is back to the
unsupervised task with the smooth overlap distribut
P(l).

This writes

I AP~A,X;B!5I P~X;B!. ~13!

The direct proof is straightforward usingp(AjuAB)
5p(juB).

If the cluster labelAm is not provided, one has an unsu
pervised learning task equivalent to having the patterns g
erated from the symmetric and smooth mixture distributio

SP~l![ 1
2 @P~l!1P~2l!#. ~14!

We will denote byI SP(X;B) the information conveyed by
the patterns alone.

Another quantity of interest is the amount of informatio
conveyed by the cluster labels aboutB when the patterns
generated with the probability~14!, are known, that is,
I SP(A;BuX). From information theory one has that the i
formation that the pair of variables~A,X! gives about the
symmetry breaking axis is equal to the information that
patterns alone gives aboutB, plus the information thatA
gives aboutB when the patterns are already known:

I AP~A,X;B!5I SP~X;B!1I SP~A;BuX!. ~15!

As we will see in Sec. IV, the left-hand side~lhs! of Eq. ~13!
and the first term of the right-hand side~rhs! can be com-
puted with the replica technique. From these two calculati
one then gets the second term in the rhs. Since the infor
tion is a positive quantity, from Eqs.~13! and~15! it follows
that

I SP~X;B!<I P~X;B!. ~16!

Equations~13! and~15! relating supervised and unsupervis
informations are illustrated in Fig. 5 in the particular case
a Gaussian overlap distribution.

Note: If the ~single cluster! distribution p(juB) is sym-
metric about the origin, the two clusters are indistinguis
able, and one hasI AP(A,X;B)5I SP(X;B).
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2. Class learning

We consider now that the patternsX5$jm%m51
p are gen-

erated byp independent samplings from the distributio
p(juB) defined as in Eq.~2! with a distributionP(l) asso-
ciated with a symmetrical and smooth potentialVP(l). In
addition, for each pattern a teacher provides a class la
that is a binary classificationSm561. Since we are consid
ering models with a single symmetry-breaking orientatio
we assume that theB vector in the pattern distribution~2!
also controls the classification according to

Sm5sgn~B–jm!. ~17!

Denoting byS5$Sm%m51
p the set of class labels, the mod

we are considering is thus

P~S,XuB!5 )
m51

p

Q~Smjm
–B!p~jmuB!. ~18!

We denote byI PS(S,X;B) the mutual information betwee
the pair of variables~S,X! and the parameterB. It has to be
noted that contrary to most supervised learning models
viously studied, the patterns themselves carry informat
about the teacher~the symmetry-breaking direction!.

As was pointed out in@16#, the classification of the pat
tern j asS automatically implies that the patternSj is clas-
sified as11. The overlap distribution of a patternSj, de-
noted byQP, readily follows from the original oneP(l):

QP~l![2Q~l!P~l!, ~19!

whereQ~l! is the Heavyside distribution. The correspondi
potential is

VQP~l!5` for l,0,

VQP~l!5VP~l!2 ln 2 for l.0. ~20!

The task is thus equivalent to an unsupervised learning
with the discontinuous overlap distributionQP(l). This
writes

I PS~S,X;B!5I QP~X;B!. ~21!

Note: this equality is true only when the overlap distrib
tion P(l) is symmetric. Otherwise patterns with classific
tion S511 andS521 convey different information abou
B, and the supervised informationI PS(S,X;B) is not in gen-
eral directly related to an unsupervised problem as in
~21!.

If the class label is not given, one is back to the unsup
vised learning problem with smooth potentialP(l), for
which the information isI P(X;B). The additional amount o
information given by the class labels is notedI P(S;BuX).
Similarly to Eqs.~15! and ~16! one has

I PS~S,X;B!5I P~X;B!1I P~S;BuX! ~22!

and

I P~X;B!<I QP~X;B!. ~23!
el,
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n
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Equations~21! and~22! relating supervised and unsupervis
informations are illustrated in Figs. 8 and 9 for differe
choices of the overlap distribution.

One may note that we could have considered class le
ing as a particular case of cluster learning where the sin
cluster distribution is given by 2Q(l)P(l). However, what
justifies distinguishing the two types of supervised learn
is that, as we have seen above, supervised cluster learni
related through Eq.~13! to smoothunsupervised learning
and class learning is related through Eq.~21! to discontinu-
ousunsupervised learning.

In the following, thanks to these relationships betwe
supervised and unsupervised learning tasks, we will indiff
ently take either the supervised or the unsupervised poin
view according to which is the more convenient or releva
to the current discussion.

III. EXACT BOUNDS AND ASYMPTOTIC BEHAVIORS

We derive now exact bounds and exact asymptotic beh
iors for the mutual information. Some of these results
specific to the form~2! of the probability distribution and
other are more general. We begin with a linear upper bou

A. Linear bound

The mutual information, a positive quantity, cannot gro
faster than linearly in the amount of datap. Indeed, it is easy
to show that

I ~X;B!<pI1~j;B!, ~24!

where I 1 is the mutual information between the parame
and a single example~one can check thatpI12I can be
written as a Kullback divergence, a quantity always no
negative!. However, I 1 cannot be easily computed in th
general case. We derive the simpler linear upper bound:

I ~X;B!<2p^V~l!&. ~25!

This relation is true for allp and allN. We prove the inequal-
ity for the casê l&50. The extension to the case^l&Þ0 is
straightforward. As we will see, for the particular family o
models that we are considering, in the largeN limit this
upper bound becomes in fact identical to the boundpI1 .

In the expression~6! of the mutual information, the com
putation of the second term, the equivocationH(XuB), is
straightforward. One gets

H~XuB!5
pN

2
ln~2pe!1

p

2
~^l2&21!1p^V&. ~26!

The first term on the rhs of Eq.~6!, that is, the entropy of the
data,H(X), is the quantity difficult to compute. Howeve
one can upperbound this entropy by the entropy of
Gaussian with the same covariance matrix. The covaria
matrix of the data is easily obtained as

^^j i
mj j

n&&5dmn„d i j 1~^l2&21!BiBj /iBi2
…, ~27!

where(.) denotes the average over the parameter distr
tion. One then has
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H~X!<
pN

2
ln~2pe!1

p

2 (
i 51

N

ln@11~^l2&21!h i #,

~28!

whereh i are the eigenvalues of the matrixBiBj /iBi2. Put-
ting Eqs.~28! and ~26! together with Eq.~6!, one gets the
linear bound

I ~X;B!<2p^V~l!&2
p

2
~^l2&21!

1
p

2 (
i 51

N

ln@11~^l2&21!h i #. ~29!

Using the property ln(11x)<x together with

15(
i 51

N

BiBi /iBi25(
i 51

N

h i ,

one then gets the simpler bound~25!.
In fact the bound~29! becomes identical to Eq.~25! in the

asymptotic regimeN→` whenever all the eigenvaluesh i
are of the same order, that is, 1/N. This is, in particular, true
if the prior is spherically symmetric, in which caseh i
51/N for all i 51, . . . ,N. In these cases, for finiteN, the
bound~29! reads

I ~X;B!<2p^V~l!&2
p

2
~^l2&21!1

pN

2
lnS 11

^l2&21

N D .

~30!

In the largeN limit, keepinga5p/N fixed, one has then

lim
N→`

1

N
I ~X;B!<2a^V~l!&. ~31!

From the relationship between mutual information a
free energy, Eq.~10!, this inequality~25! can also be written
as

2^^ ln~Z!&&<0 ~32!

that is, the mean free energy is always negative or null.

B. Asymptotic behavior and Fisher information

The asymptotic limit usually considered in the context
statistical parameter estimation is the one where the dim
sion of the parameter space,N, is given~and not necessarily
large!, and the number of examplesp is large compared to
the dimensionN. For smooth structure, it has been prov
@1,4,5# that, in that limit p@N, the mutual information in-
creases as half the logarithm of the determinant of theFisher
information matrix. This matrix is a fundamental quantity i
parameter estimation: its inverse is a bound on the cov
ance of any efficient estimator~Cramer-Rao bound, see, e.g
@6#!. Hence, in this asymptotic limit of large data size, o
has a simple and explicit link between the mutual inform
tion and the best possible performance of an estimator.
our model family, this asymptotic behavior of the mutu
information reads
f
n-

ri-

-
or
l

I ~X;B!;I Fisher for p@N

I Fisher[
N

2
lnS p

N
^V82~l!& D , ~33!

whereV8(l)5dV(l)/dl. We will see in Sec. IV that this
asymptotic behavior is correctly predicted by the replica c
culation for smooth potentials, in the limitN→` first, then
a5p/N→`. In the case of nonsmooth distributions, th
Fisher information matrix does not exist~it is infinite!. One
can then expect a different asymptotic behavior for the m
tual information, as suggested by the bound derived in
next section.

C. Bound on the class information

We show in this section that the mutual information b
tween the class and the symmetry-breaking orientation gi
the patternI P(S;BuX) is bounded:

I P~S;BuX!< ln D~p,N!, ~34!

where

D~p,N![ (
k50

min~p,N!

Cp
k ~35!

with Cp
k5p!/ @k!( p2k)! #.

This bound and its proof are the same as for the inform
tion capacity of a perceptron studied in@18,8,19#. The argu-
ment is as follows. Since the class is a deterministic funct
of the parameterB, when the pattern is given, the mutu
information between the class labels and the paramete
equal to the conditional entropy of the labels givenX:

I P~S;BuX!52(
S

^^P~SuX!ln P~SuX!&&, ~36!

where P(SuX)5*dB P(BuX)Pm51
p Q(SmB–jm) with

P(BuX)5r(B)P(XuB)/P(X). Let us call D(X)<2p the
number of realizable dichotomies, that is, the number of d
tinct configurationsS5$Sm%m51

p for which there is at leas
one parameterB such that Sm5sgn(jm

–B) for every m
51, . . . ,p. The entropy of the distributionP(SuX) is maxi-
mum when every possibleShas the same probability, that i
1/D~X!. Hence

I P~S;BuX!<^^ ln D~X!&&. ~37!

If the patterns are in ‘‘general position,’’ one basic res
@20# is that D~X! is in fact independent of the particula
sampleX, and depends only onp and N, being equal to
D(p,N) defined in Eq.~35!. As a result one then obtains th
bound ~34!. If the patterns are not in general position, t
bound remains valid because thenD(X)<D(p,N).

In the limit N→` and a5p/N fixed, one has the
asymptotic behavior

lim
N→`

ln D~p,N!

N
5H a ln 2 if a<2,

aH~1/a! if a.2,
; ln a for large a,

~38!
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whereH(x)52@x ln x1(12x)ln(12x)#. This shows in par-
ticular that forp@N the mutual informationI P(S;BuX) in-
creases at most as lnp/N for p large. We will see in Secs
III D and IV that this behavior is indeed reached for sup
vised learning tasks. This should be contrasted with the
havior for smooth densities, in12 ln p/N.

D. Opper-Haussler bounds

In the case of class supervised learning with patterns
related with the vectorB, it is not clear at this point which
asymptotic behavior for the mutual information between d
and parameter should be expected. In the case of super
learning, with a PDF for the patterns that does not depend
the parameterp(juB)5p(j), very useful bounds on the mu
tual informationI (S,X;B)5I (S;BuX) have been derived by
Opper and Haussler@19,7#.

From these bounds one obtains the asymptotic beha
for the mutual information. For the standard perceptron~that
is, for supervised learning with the deterministic rule a
patterns uncorrelated with the parameter!, the main result is
I (S;BuX);N ln p in the limit p→`.

In the Appendix we apply the techniques of@7# to the case
of supervised and unsupervised parameter estimation t
with patterns correlated to the parameter. Quite interestin
as we show in the Appendix, these tools introduced in@7# in
order to extract the largep behavior of the mutual informa
tion, allow also to derive lower and upper bounds for bo
unsupervised and supervised learning in the regime of la
N and largep for any given value ofa5p/N; that is, in the
same regime as with the replica calculations. These bou
are shown in Fig. 2 for an unsupervised Gaussian and sim
perceptron learning~models 1 and 6, respectively!. The de-
tails are given in the Appendix, and we present here the m
results concerning the limit of large data size.

One deduces from the bounds that in the largep limit, I
;(N/2)ln p for smooth unsupervised learning, andI
;N ln p for supervised learning. ForN large, in the largea
limit, one finds for smooth unsupervised learning,

1
2 lnS a

e

4
^V82& D< i ~X;B!< 1

2 ln~ae^V82&! ~39!

with i (X;B)5 limN→`I (X;B)/N, in agreement with the ex
act behavior ~33! derived in Sec. III, that is, I
;(N/2)ln(p/N)^V82&. One can note the quality of the bound
in this case. For supervised learning, in the same limit

lnS a
e

p
e2V~0!D< i ~S,X;B!< ln a1O~ ln ln a! ~40!

with i (S,X;B)5 limN→`I (S,X;B)/N. In the case of the stan
dard perceptron, that is, forV[0, we have the better uppe
bound given by Eq.~38!, which shows that there is no co
rection of order ln lna to the leading behavior. We will se
in the next section that the replica calculations, in agreem
with the above inequalities, suggests that there is no s
correction for nonzero potentials either.
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IV. REPLICA CALCULATIONS

We now compare the previous results with those p
dicted by replica calculations.

A. Replica calculation of the mutual information

In the limit N→` with a finite, the calculation of the free
energy^^ ln Z(X)&& in Eq. ~10! can be performed by standar
replica technique. This calculation is the same as those
lated to Gibbs learning, done in@15–17# but the interpreta-
tion of the order parameters is different. Assuming repl
symmetry, the result for the total mutual information~10! is
as follows:

limN→`

I ~X;B!

N
5 i ~a,Q!,

i ~a,Q![2
1

2
@Q1 ln~12Q!#2a^V~l!&

2aE Dx A~x,Q!ln A~x,Q! ~41!

with

A~x,Q![E Dy exp@2V~yA12Q1xAQ!#, ~42!

Dx andDy being the Gaussian measure. The order param
Q5Q(a) is solution of the saddle point equation

] i

]Q
50, ~43!

which reads

Q

12Q
52aE Dx

]A~x,Q!

]Q
ln A~x,Q!. ~44!

The order parameterQ is restricted to the@0,1# interval and
can be interpreted as the typical overlap between two di
tions compatible with the data. The stability of the symme
ansatz has already been studied for various specific cho
of potentialsV. The main result@17# is that the replica sym-
metric solution is stable if

dQ

da
.0. ~45!

Within this hypothesis of replica symmetry, and for a gene
potentialV, one can analyze from Eq.~41! the behavior of
the mutual informationi (a)5 i „a,Q(a)… as function ofa.
Different behaviors will occur depending on some propert
of the potential. We will illustrate each case with a speci
model in Sec. V.

A first remark concerns the concavity ofi (a). One ex-
pects the mutual information to be a concave function of
data sizep. This is indeed the case for the mutual inform
tion computed with the replica technique under the repl
symmetry ansatz. SinceQ satisfies Eq.~43!, one hasdi/da
5] i /]a, so that from Eq.~41! one can write
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2
Q

2
2 1

2 ln~12Q!5 i ~a!2a
di~a!

da
. ~46!

As the lhs is always positive forQ in @0,1#, one has
@ i (a)#/a>di/da. Under the reasonable hypothesis that
mutual information is a nondecreasing function ofa, it fol-
lows that i (a) is concave. From Eq.~46! on gets also tha
dQ/da has the sign of2d2i /da2 ~whereveri admits a sec-
ond derivative!, hencedQ/da.0: this is exactly the condi-
tion for the stability of the replica symmetric solution.

One can note also the interesting structure of the ab
equation~46!. From the replica calculation one has that t
lhs is the~logarithm of the! volume of the domain in param
eter space in which two directions taken at random hav
typical overlap equal toQ. If we define j [@di(a)#/da, the
rhs of Eq.~46! is the Legendre transforml ( j )[ i (a)2a j ,
which is a function ofj alone, that is, of the marginal gain o
information for an infinitesimal increase ofa.

We consider now the behavior of the mutual informati
~41! in the small and largea regimes according to the replic
calculation.

B. Unsupervised learning

We consider first the case of unsupervised learning.
derived the behavior for smalla which is true for all poten-
tial. In the largea we consider smooth and discontinuo
potentials showing different asymptotic behaviors. In t
next section we will deduce the asymptotic behavior for
pervised learning from the behaviors obtained for unsup
vised learning.

1. Small a

For some potentials one findsQ strictly null from a50
up to a critical valueac.0. This is known asretarded gen-
eralization in the context of supervised learning@21#, and
retarded classificationin the case of unsupervised learnin
@15#. Explicit calculation gives that such retarded classific
tion occurs whenever̂l&50, a case illustrated by models
and 2 in the next section.

In such case, since from Eq.~42! A(x,0)51 for any x,
one gets from Eq.~41! that the mutual information is strictly
linear in @0,ac#:

i ~a!52a^V~l!&. ~47!

This is a regime where there is no redundancy in the d
each datum conveys some information independent from
information conveyed by the other data. It corresponds
the context of neural coding, to the regime where full redu
dancy reduction can be achieved@8,12#.

In this regime one saturates the bound~25!: one gains
from the data the largest possible amount of informat
about the probability distribution of the patterns. Howev
Q50 means that no estimation of the parameterB is pos-
sible for a,ac . To understand better this seemingly pa
doxical result, consider the simple caseN53 and a overlap
distribution P(l)5d(l). After receiving a first examplej,
we know for sure that the vectorB lies in the plane orthogo
nal to this pattern. We have thus gained a large amoun
information about the localization ofB. However, due to the
e

e

a

e

e
-
r-

-

a:
e

n
-

n
,

-

of

symmetrical nature of the space left forB, one cannot give
an estimation of this orientation and the direction of the n
pattern is still unpredictable.

It is only at ac when correlations between examples a
pear that one is able to make prediction on the next sam
Then Q becomes different from zero, and this may happ
either continuously or with a jump to a finite value. Accor
ing to Eq.~46! the linear regime is left smoothly in the con
tinuous case, and with a discontinuity in the slope in t
discontinuous case. In any case, the mutual information it
is continuous at the transition since the information
bounded by Eq.~25!, and it cannot decrease~one cannot
have less information with more examples!. It follows also
that the mean free energy must leave his zero level cont
ously.

For ^l&Þ0, the bias in the distribution ofl allows to
build a nontrivial estimate ofB even with a very small num-
ber of examples. Then the mutual information cannot sa
rate the linear bound. Indeed, in thea→0 limit, one finds the
following behavior for the mutual information when̂l&
Þ0:

i ~a!52a^V~l!&2 1
4 a2^l&41O~a3!. ~48!

2. Large a limit

We consider now thea→` limit. First, one can see the
relationship between the asymptotic behaviors ofQ→1 and
i (a) from Eq. ~46!. If for large a Eq. ~43! for Q gives

12Q5~aC!2n ~49!

for some exponentn.0 and constantC, then Eq.~46! gives

i ~a!;
n

2
ln~aC!1

n21

2
. ~50!

In already studied models one findsn51 for smooth PDF’s,
andn52 for standard supervised learning tasks~see, e.g.,@2#
and the papers cited in Sec. IV A!. This implies a behavior in
1/2 lna and lna for smooth and non smooth potentials, r
spectively. More precisely, the asymptotic behaviors are
follows.

For smooth potentials, a straightforward expansion
Eqs.~41! and ~44! for Q→1 leads to

i ~a!5 1
2 ln@a^V82~l!&#1O~a21!. ~51!

This is in agreement with Eq.~33! and the bounds~39!. Two
examples of smooth unsupervised learning are detailed
Sec. V, models 1 and 2.

We study now the interesting case of a discontinuity
the form

P~l!50, l,l0 ,

P~l! smooth, l.l0 , ~52!

lim
l→l0

P~l!5DP.0.

By closer inspection of Eqs.~41! and ~44!, one finds that in
the limit Q→1, in the region that contributes the most in th
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integrations onx and l, one can replace exp2V(z) with z
[yA12Q1xAQ by Q(z2l0)exp2V(max@l0,x#). This
yields the leading order in the asymptotic expansion:

i ~a!; ln~aDPK! ~53!

with

K5AeE Dx x ln E
2x

`

Dy. ~54!

The numerical value of this constant isK;1.489.
This behavior~53! is in good agreement with the lowe

bound in Eq.~40!. For such discontinuous probability, th
rate of information gain given by the patterns is twice t
rate for smooth potentials. This rate is controlled by t
value of the discontinuityDP. An example of unsupervise
learning with discontinuous potential is detailed in Sec.
model 3.

C. Supervised learning

We have shown in Sec. II C, Eqs.~13!, ~21!, and ~22!,
how the information quantities related to supervised and
supervised tasks is related. Having computing in the prec
ing section the asymptotic behaviors in the unsupervi
case, we then deduce the asymptotic behavior for the mu
informations related to supervised learning. We give bel
the main results for cluster and class learning. The notat
are the same as in Sec. II C.

1. Cluster learning

Let P(l) be a smooth distribution. For smalla, one gets

lim
N→`

I AP~A,X;B!

N
52a^VP&1O~a2!,

~55!

lim
N→`

I SP~A;BuX!

N
52a~^VP&2^VSP&!1O~a2!

and for largea

lim
N→`

I AP~A,X;B!

N
5 1

2 ln~a^VP8
2&!1O~a21!,

~56!

lim
N→`

I SP~A;BuX!

N
5 1

2 lnS ^VP8
2&

^VSP82 &
D 1O~a21!.

The amount of information given by the cluster label co
verges toward a constant. Then almost all the informat
comes from the patterns alone. This is illustrated in Sec
model 4. In the special case of two nonoverlapping clus
distributions, that is,P(l) andP(2l) are not different from
zero together, we havêVSP82 &5^VP8

2& and the label informa-
tion converges to zero. With a large number of patterns,
vectorB becomes localized with high accuracy. Now, sin
the patterns withA521 andA511 are well separated in
this model, the label of the patterns become predictable
give no additional information. This behavior is illustrated
Sec. V, model 5.
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2. Class learning

In this sectionP(l) is a symmetrical smooth distribution
For smalla, with VQP defined in Eq.~20!, one has

lim
N→`

I PS~S,X;B!

N
;2a^VQP~l!&1O~a2!,

~57!

lim
N→`

I P~S;BuX!

N
;a ln 21O~a2!.

The O(a2) is a negative contribution. This is in agreeme
with the bound~34!, ~38!.

Consider first the particular case where the patterns h
no statistical dependency in the vectorB, that is V(l)[0.
Then the pattern themselves carry no information aboutB,
and the task is the standard supervised learning task b
simple perceptron. One gets the asymptotic behavior for
mutual informationI Perceptron(S,X;B)5I Perceptron(S;BuX):

lim
N→`

I Perceptron~S;BuX!/N; lnS aA2

p
K D ~58!

whereK is given by Eq.~54!, in agreement with the compu
tation of the free energy done in@22#. In this case the bound
~34!,~38! is asymptotically saturated. This is illustrated
Sec. V, model 6.

Consider now the case where the patterns are correl
with the directionB, that is,V(l)Ó0. The distribution~19!
has the form ~52! with l050 and DP52P(0). The
asymptotic behaviors are given by

lim
N→`

I PS~S,X;B!

N
; lnS aA2

p
K e2V~0!D ,

~59!

lim
N→`

I P~S;BuX!

N
; 1

2 lnS a
2K2e22V~0!

p^VP8
2&

D ,

whereK is given by Eq.~54!. The information rate given by
the pair~S,X! behaves as lna, as for the simple perceptron
but here half of the information comes from the patter
alone and half from the class information. These results
illustrated in Sec. V, models 6 and 7.

V. SPECIFIC MODELS

We illustrate on specific models the different behaviors
the mutual information discussed in the preceding sect
We compare the predictions of the replica calculations w
the exact results from Sec. III. Some of the models presen
here have been previously treated in the replica symm
approach. For those models, the behavior of the order par
eter can be found in the cited references.

A. Unsupervised learning

Model 1: smooth Gaussian learning.The simplest
model is obtained for a Gaussian overlap distribution. T
replica calculation of the free energy has been performe
@23#. We use the following parameterization:
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P~l!5G~l;r,s![
1

A2ps
expS 2

~l1r!2

2s2 D . ~60!

The mutual informationI G(X,B) is shown in Fig. 1 with
parameters valuer50 ands51/A6.

As ^l&50, retarded classification occurs. For largea, the
information behaves as; 1

2 ln(a^VG8
2&) in agreement with Eq.

~33!. The behavior is similar to the one in model 2 below, f
which we give a more detailed analysis. In Fig. 2~a! the
information as computed with the replica technique is co
pared with the lowerI lb and upperI ub bound from Sec. III D
computed respectively by Eqs.~A14! and~A33!. The bounds
are in very good agreement with the replica calculation.

FIG. 1. The smooth unsupervised Gaussian learningI G(X;B)
from model 1. For largea it behaves as; 1

2 ln a. The supervised
class informationI GS(S,X;B) and the additional class informatio
I G(S;BuX) from model 6 withs51/A6 andr50. Their asymptotic
behavior are respectively,; ln a and ; 1

2 ln a. Shown also is the
class informationI Perceptron(S;BuX) for the simple perceptron from
model 6 and the bound on the class label information lnD(p,N)
from Eq. ~38!. The simple perceptron asymptotically saturates
bound. Both of them have a; ln a asymptotic behavior.
-

Model 2: smooth mixture distribution.The data are
generated from a Gaussian mixture distribution with an ov
lap distribution given by

P~l!5GG~l;r,s![
1

2 (
A561

G~Al;r,s!, ~61!

where G is the Gaussian distribution~60! introduced in
model 1. We will see how this particular overlap distributio
is also related to supervised cluster and supervised c
learning~see models 4 and 7!.

The behavior of the order parameterQ and the mean free
energy are given in Fig. 3. The mutual informatio
I GG(X;B) and the bound~25! associated with the distribu
tion ~61! are shown in Fig. 4. In both figures the paramet
arer51.2 ands50.5.

Since^l&50, retarded classificationoccurs: up to a criti-
cal valueac , the order parameterQ is null, the free energy is
null and the mutual information saturates the linear bou
being given by Eq.~47!. At ac the mutual information leaves
this linear regime. In the largea limit, the asymptotic behav-
ior is ; 1

2 ln a. This is the same behavior as in model 1.
In the replica symmetry ansatz, the true minimum of t

free energy is given bŷ̂ ln Z&&50 until a5a1 , and then the
solutiona1→P3 shown on Fig. 3~b!. The corresponding be
havior of the order parameter is shown on Fig. 3~a!: Q is null
until a1 and follows the lower branch untilP3 where it
jumps to the upper branch. In this scenario we thus h
ac5a1 .

However, it had been suggested in@17# that the order
parameterQ can reach the upper branch well beforea(P3).
As we have seen, the mean free energy cannot be pos
and must be continuous~see Sec. IV B 1!. It results that the
only possibility of a jump to the upper branch beforea(P3)
~that is, by following a metastable solution!, would be that
the free energy follows the path 0→a2→P3 ~see Fig. 3!. In
such case the order parameter is null untila2 , where it
jumps to the upper branch. This would giveac5a2 .

Model 3: discontinuous Gaussian learning.This case
has been treated in@16#. The data are generated from

e

an

FIG. 2. The lowerI lb and upperI ub bound on the mutual information from Sec. III D. These are computed with Eqs.~A14! and~A33!,

respectively, and compared with the mutual information computed with the replica technique~a! for the smooth unsupervised Gaussi
learning, model 1 and~b! for the supervised learning of the simple perceptron, model 6.
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the discontinuous overlap distribution obtained fro
the truncated Gaussian distribution,QG(l;s,r)
52Q(l)G(l;s,r). The mutual informationI QG(X,B) is
given in Fig. 1 with s51/A6 and r50. The asymptotic
behavior for largea is ; ln a, see Eq.~53!. For large data
size, it is the patterns near the discontinuity which give
largest information about the localization ofB.

B. Supervised learning

Model 4: Gaussian cluster learning.As a particular
instance of cluster learning, Eq.~12!, we consider the Gauss
ian mixture ~61! introduced in model 2 in which the two
clustersA561 have Gaussian distributions:

PA~l!5G~Al;r,s!, ~62!

FIG. 3. ~a! the order parameterQ and ~b! the free energy as
functions of a, for the smooth unsupervised mixture learnin
model 2 withr51.2 ands50.5, as computed in~Buhot and Gor-
don, 1998! under the replica symmetry ansatz. In the range oa
values shown on these graphs the mean field equation forQ, Eq.
~43!, accepts several solutions~in particularQ50 is always a so-
lution!. The stability analysis~not shown! and our results allow to
eliminate some of them. In particular the values giving a posit
free energy must be rejected. The solution corresponding to
absolute minimum of the free energy follows 0→a1→P3, which
gives ac5a1 . Another metastable pathway is 0→a2→P3 ~see
text!. a152.10,a252.515, anda(P3)52.527.
e

where G is the Gaussian distribution~60!. Each pattern is
generated from one of the two clusters with equal probabi
and the cluster labelA561 is given. NotingI AGG(A,X;B)
the information the patterns and their labels give aboutB and
I GG(A;BuX) the cluster information, relations~13! and ~15!
relating supervised and unsupervised learning are illustra
in Fig. 5.

I G(X;B) and I GG(X;B) have been calculated, respe
tively, in models 1 and 2. All of this information is plotted i
figure 4 fors50.5 andr51.2. For smalla, the cluster in-
formation grows. As the estimation of directionB becomes
more and more accurate with the number of data, the clue
e

FIG. 4. As function ofa, in the largeN limit: ~i! the mutual
information for smooth unsupervised mixture learningI GG(X;B)
for model 2, withs50.5 andr51.2, together with the associate
linear bound. This information is strictly linear up toac . The spe-
cial structure nearaC visible on the order parameter and the fr
energy~figure 3! is not visible here due to the graph scale.~ii ! The
supervised Gaussian cluster informationI AGG(A,X;B) and the clus-
ter information I GG(A;BuX) from model 4. ~iii ! The supervised
discontinuous class informationI GGS(S,X;B) and the class infor-
mation I GG(S;BuX) from model 7. All these models are linke
together~see Figs. 5 and 9!. a(P4)53.45 anda(P5)53.65 are
upper bounds onac ~see text, models 4 and 7!.

FIG. 5. Illustration of Eqs.~13! and ~15! for the particular case
of Gaussian cluster learning. The informationI AGG(A,X;B) the
patterns and their labels give aboutB is equal to the information
I G(X;B) given in an unsupervised smooth learning with examp
drawn from the overlap probabilityG(l;s,r). This information is
also equal to sum of the informationI GG(X;B) the patterns without
any cluster information give aboutB ~the unsupervised mixture
information associated to model 2!, plus the cluster information
I GG(A;BuX) the labels convey aboutB when the patterns are
known.
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to which the patterns belong becomes more predictable.
explains the decrease of the information that converges
wards a constant~56!. Due to the smooth nature of the PD
G(l;s,r), the largea supervised information behavior i
I AGG(A,X;B); 1

2 ln a.
We show that the linear bound on the mutual informat

can be used to obtain bounds on the valueac . Let a(P4) be
the intersection of the informationI AGG(A,X;B) with
2a^VGG&, that is, the linear bound for the unsupervis
information I GG(X;B). Since the supervised information
always bigger than the unsupervised one, see Eq.~16!, one
has

ac<a~P4!. ~63!

This is illustrated in Fig. 4.
Model 5: nonoverlapping cluster learning.We con-

sider the cluster distributionPA(l)5CC(Al;a) with

CC~l;a![2Q~l!
~11a!3/2

A2p
l2 expS 2

~11a!l2

2 D .

~64!

The model is similar to model 4 but now the two clusters
not overlap. Relations between supervised informat
I ACC(C,X;B), unsupervised smooth informationI C(X;B),
unsupervised smooth learningI CC(X;B), and the cluster in-
formation I CC(A;BuX) are illustrated in Fig. 6.

The information behaviors and the linear bound asso
ated with distribution~64! are shown in Fig. 7 fora50.9.
The unsupervised informationI CC(X;B) shows a similar be-
havior as that encountered in model 2.I CC(X;B) and
I ACC(C,X;B) converges to the same limit in; 1

2 ln a. The
cluster information vanishes due to the fact that the clus
do not overlap~the cluster label becomes predictable w
high accuracy!.

Model 6: supervised perceptron.The data are gener
ated by the overlap distributionG(l;s,r) considered in
model 1 and a teacher provide the class labelS5sgn(B•j)
for each patternj of the data set. Relations between sup
vised informationI GS(S,X;B), unsupervised discontinuou
information I QG(X;B), calculated in model 3, unsupervise
smooth learningI G(X;B), calculated in model 1, and th
class informationI G(S;BuX) are illustrated in Fig. 8.

These information quantities are shown in Fig. 1 fors
51/A6 andr50. Also shown is the bound~34! on the class
information in the largeN limit. For smalla, the class infor-
mation I G(S;BuX) almost saturate this bound in agreeme

FIG. 6. Illustration of Eqs.~13! and ~15! for the PDF P(l)
5CC(l;a) ~see text, Sec. II C 2 and model 5!. The two clusters are
well separated and all the distributions are smooth.
is
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with Eq. ~57!. For largea it behaves as; 1
2 ln a. In this limit

the label information of examples near the boundary sepa
ing S521 and theS511 example give valuable informa
tion aboutB. The smooth unsupervised partI G(X;B) be-
haves also as; 1

2 ln a. This implies that the total supervise
information I GS(S,X;B) behaves as; ln a.

The special cases51, r50 corresponds toV(l)[0,
that is to the standard supervised learning task with a tea
perceptron. The patterns are symmetrically distributed in
the directions and are not correlated with the symme
breaking orientation. ThenI G(X;B)50 and I GS(S,X;B)
5I Perceptron(S;BuX). This information is plotted in Fig. 1.
According to Eq.~58! it asymptotically saturates the boun
In Fig. 2~b! the information as computed with the replic
technique is compared with the lowerI lb and upperI ub bound
from Sec. III D computed, respectively, by Eqs.~A14! and
~A33!. One sees that the replica calculation is in good agr
ment with the bounds. If one believes that it gives indeed
exact result, then one can see the very good quality of

FIG. 7. As function ofa the information quantities appearing i
Fig. 6 for model 5 witha50.9: I ACC(A,X;B) ~supervised learn-
ing!, I C(X;B) ~smooth unsupervised!, together with the associate
linear bound2p^VCC&, andI CC(A;BuX) ~cluster information!. The
supervised and unsupervised informations have the s
asymptotic behavior,; 1

2 ln a. The class information vanishes be
cause the cluster label becomes easily predictable for largea.

FIG. 8. Illustration of Eqs.~21! and~22! relating supervised and
unsupervised learning with a Gaussian pdf to unsupervised lear
with a discontinuous distribution. For each mutual information t
subscript refers to the distribution from which the examples
drawn ~see text, Sec. II C 2 and model 6!. The particular cases
51, for which I G(X;B)50, corresponds to the standard supervis
learning task by a perceptron.
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lower bound at any value ofa, whereas the upper bound
less precise due to the presence of the term of order lna
~see Sec. III D!.

Model 7: class learning. The patterns are generate
with the mixture distributionGG(l;s,r) considered in
model 2, but now a teacher provides the class label for e
pattern, that is,S5sgn(B•j). We noteI GGS(S,X;B) the in-
formation the patterns and their labels give aboutB, and
I GG(S,BuX) the label information. The relations~21! and
~22! are illustrated in Fig. 9 whereI QGG(X;B) in an unsu-
pervised discontinuous learning from examples drawn fr
the discontinuous overlap probabilityQGG(l;s,r)
52Q(l)GG(l;s,r) and I GG(X;B) has been calculated i
model 2.

These informations are drawn in Fig. 4 fors50.5 and
r51.2. For not too largea, the behavior of the class infor
mation I GGS(S,X;B) and I GG(S;BuX) is similar to the be-
havior of their corresponding cluster informatio
I AGG(A,X;B) and I GG(A;BuX). For largea this is no more
true due to the discontinuous nature of the class learn
The largea behavior is similar to the one encountered
model 6.

As the supervised information is always bigger than
unsupervised one, similarly to~63! one gets thata(P5) is an
upper bound onac ~see Fig. 4!. It has to be noted for super
vised learning that in some region, especially for smalla,
one can gain more than one bit of information per examp
one bit from the binary classification plus the informati
conveyed by the patterns themselves.

VI. BOUNDS FOR SPECIFIC ESTIMATORS

Given the dataX, one wants to find an estimateJ of the
parameterB ~see Fig. 10!. Although this paper is not prima
rily concerned with the question of estimating the perf
mance of estimators, we show in this section that making

FIG. 9. Illustration of Eqs.~21! and ~22! relating supervised
class learning to unsupervised learning with discontinuous distr
tion. For each mutual information the subscript refers to the dis
bution from which the examples are drawn~see text, Sec. II C 2 and
model 7!.

FIG. 10. The flow of information. First an orientationB is
drawn from aprior distributionr~B!. Then, patterns are generate
according toP(XuB). In the last process, an estimationJ of the
original orientation is extracted from the examples. The informat
decreases at each step.
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of the mutual information one can derive simple bounds
the performance of some specific estimators.

The amount of informationI (X;B) limits the performance
of any estimator. Indeed, since processing cannot incre
information @6#, one has

I ~J;B!<I ~X;B!. ~65!

This basic relationship allows to derive interesting boun
based on the choice of particular estimators. We cons
first Gibbs learning, which consists in sampling a direc
tion J from the a posteriori probability P(JuX)
5P(XuJ)r(J)/P(X). In this particular case, the differentia
entropy of the estimatorJ and of the parameterB are equal,
H(J)5H(B). If 12Qg

2 is the variance of theGibbsestima-
tor, from Eq.~6! and using again the fact that the entropy
a Gaussian distribution is greater than the entropy of
distribution with the same variance, one gets the relations
a Gaussian prior onB

2
N

2
ln~12Qg

2!<I Gibbs~J;B!<I ~X;B!. ~66!

These relations together with the linear bound~25! allows to
bound the order parameterQg for smalla, where this bound
is of interest.

TheBayes estimatorconsists in taking forJ the center of
mass of thea posterioriprobability. In the limita→`, this
distribution becomes Gaussian centered at its most prob
value.

We can thus assumePBayes(JuB) to be Gaussian with
meanQbB and variance 12Qb

2. Then the first inequality in
Eq. ~66! ~with Qg replaced byQb andGibbsby Bayes! be-
comes an equality. Using the Cramer-Rao bound on the v
ance of the estimator one can then bound the mutual in
mation for the Bayes estimator,

I Bayes~J;B!<
N

2
ln@11a^V82~l!&#. ~67!

The rhs is the Fisher information~33!. For a→` all these
quantities have the same asymptotic behavior. They
shown in Fig. 11 from replica calculation, when the data
generated with the Gaussian overlap distributionG(l;r,s)
from model 1.

The fact thatQb , as computed with the replica techniqu
asymptotically saturates the Cramer-Rao bound was
noted in@24#. We have shown here that this manifests its
in the behavior of the mutual information and in the relat
quantity I Bayesdefined above.

VII. CONCLUSION

We have studied the mutual information between data
parameter in a family of unsupervised and supervised c
tering tasks. We derived exact bounds, exact asymptotic
havior, and have compared these results with replica ca
lations.

We have restricted the analysis to continuous parame
The case of discrete parameters is discussed in@3#. In such
cases the mutual information is upper bounded by the
tropy of the prior distribution on the parameter space, a
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converges exponentially to this value.
Most of the results concerning the behavior of the mut

information, observed for this particular family, are ‘‘unive
sal,’’ in that they will be qualitatively the same for any pro
lem that can be formulated as either a parameter estima
task or a neural coding task. This is in particular the case
the linear bound—that is, the information cannot grow fas
than linearly in the data size—and the asymptotic behavi
For smooth PDF, the large data size (p@N) behavior forI,
given by theFisher information, is I;(N/2)ln(p/N). In the
case of potentials with a discontinuity, or equivalently in t
case of supervised learning of a binary classification,
asymptotic behavior isI;N ln(p/N). These behaviors can b
seen to be valid for any learning machine~see@1,4,5# for the
smooth case,@7# for supervised learning!, N being under-
stood as the number of independent parameters. In partic
this results in optimal performances, which depends onp/N
and not onp/dVC , wheredVC is the Vapnik-Chervonenkis
dimension@26# ~see, in particular,@13# for the smooth case!.

We have obtained bounds and exact asymptotic behav
by extending the results in@7# to the case of unsupervise
and supervised learning with patterns correlated to the
rameter. An interesting feature is that, for the supervi
learning tasks where the patterns are correlated with
symmetry-breaking direction, half of the mutual informatio
comes from the patterns alone, and half from the class in
mation ~given the patterns!.

Besides the asymptotic regimep large, N arbitrary, we
have also considered the case of largeN at any given value
of a5p/N. In this regime we have both replica calculatio
and exact bounds, in particular, an upper bound for the c

FIG. 11. The mutual informationI G(X,B) for Gaussian unsu-
pervised learning~model 1 withs51/A6, r50!. It limits the per-
formance of any estimatorJ, since I (J;B)<I (X;B). The curve
2

1
2 ln(12Qg

2) is a lower bound on the mutual information betwe
the Gibbsestimator andB ~which would be equal to this bound i
the conditional probability distribution of the estimator were Gau
ian with meanQgu and variance 12Qg

2. Shown also is the analo
gous curve2

1
2 ln(12Qb

2) for the Bayesestimator withQb5AQg .
Qg is computed from Eq.~44!. In the limit a→` these two latter
curves and the replica informationI G(X;B), all converge toward
the exact asymptotic behavior, which can be expressed asI Fisher

5
1
2 ln@11a^V82(l)&#. This latter expression is, for anyp, an upper

bound for the two Gaussian curves.
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information and explicit upper and lower bounds for the m
tual information obtained with the techniques of@7#. The
results suggest that the replica symmetry ansatz give the
rect solution. The lower bound is then quite good where
the upper bound overestimate the mutual information b
factor that keeps increasing with the data size. We have
seen that our linear bound is particularly interesting in
case of retarded classification forp/N;ac . This critical
valueac gives the value ofa at which the mutual informa-
tion ceases to increase linearly with the amount of da
and where generalization begins. Contrary to the asympt
regime, it can be seen to be related to the Vapn
Chervonenkis dimension. This fact is confirmed by t
analysis in@25# of the respective roles ofN and dVC in a
supervised learning task for a model withNÞdVC .

The analysis of the mutual information between data a
parameter we have presented, suggests that it should b
teresting to study other models with the same set of te
niques, e.g., non smooth potentials with a singularity wh
is not a simple discontinuity, or models with a more comp
cated structure such as multilayer networks, or supp
vector machines@26#, which have been recently studied wit
statistical mechanics techniques@27#.
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APPENDIX: OPPER-HAUSSLER BOUNDS

In this section we derive lower and upper bounds for
mutual information following Opper and Haussler@7#. We
will write P(DuB) for the data distribution given the param
eter, whereD is X or (S,X) depending on the particula
model considered.

1. Lower bound

Following @7#, we make use of

I ~D;B!5J1~D;B!>Jt~D;B! ~A1!

for any 0<t<1, with

Jt~D;B![2E dB r~B!E dDP~DuB!

3 lnE dW r~W!SP~DuW!

P~DuB! D t

~A2!

~where*dD means the integration over the continuous d
and the summation over the discrete data, if any!. This holds
because

Jt2I 5E dDP~D!E dBP~BuD!ln
P~BuD!

Qt~BuD!
>0,

is the average over the data of the Kullback divergence
P(BuD) relative toQt(BuD) defined by

Qt~BuD![r~B!@P~DuB!# tY E dW r~W!@P~DuW!# t.

-
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Using the convexity of the logarithm, one lower boundsJt
by putting in Eq.~A2! the average over the data inside t
logarithm. One then makes use of the independency of
examples given the parameter, leading to, for anyt different
from 0 and 1,

I>I lb[2E dB r~B!ln E dW r~W!@v t~B,W!#p

~A3!

with, in the case of smooth unsupervised learning, tha
P(DuB)5P(XuB) defined by Eq.~1!,

v t~B,W!5g t~B,W! ~A4!

and, in the case of class learning, that is forP(DuB)
5P(S,XuB) defined by Eq.~18!:

v t~B,W!5g t~B,W!2e t~B,W!, ~A5!

where

g t~B,W![E dj p~juB!~12t !p~juW! t ~A6!

and

e t~B,W![E dj p~juB!~12t !p~juW! t

3 (
S561

Q~Sj•B!Q~2Sj•W!. ~A7!

In the particular case where the patternsj are independent o
the parameter,p(juW)5p(j), one recovers the supervise
learning case considered in@7#: g t(B,W)51 ande t(B,W)
is the probability thatB andW disagree on the classificatio
of an example. Note thatg t is the normalization factor tha
makes the mixturep(juB)(12t)p(juW) t/g t a well defined
PDF for j.

We perform the rest of the analysis working with Eq
~A3! and~A5! for both supervised and smooth unsupervis
learning, keeping in mind that for the latter case the terme t
must be dropped. It will appear that, precisely, t
asymptotic behavior will be governed by properties ofg t in
the case of smooth learning, and ofe t in the case of discon
tinuous learning, leading respectively to the (N/2)ln p and
N ln p behaviors.

Since the quantityg t(B,W)2e t(B,W) lies in @0,1#, for p
large the integral in Eq.~A5! is dominated by theW such
thatg t2e t is close to 1. Similarly to@7#, one will get that,if
the volumeVd(B) of W such thatg t(B,W)2e t(B,W)>1
2d behaves asdd(B) as d→0, then for largep the lower
bound behaves asd ln p, with d5*dB r(B)d(B). For the
particular model family we are considering, this coefficie
and in fact the detailed behavior of the bound for both
limit p large and the limitN large withp/N fixed, are easily
derived, as we show now.

We thus take into account the special structure~2! for the
PDF p(juB). In this case the quantitiesg t and e t depend
only on the scalar product of the two parameters,q
[B–W/iBiiWi . We have
e

is

.
d

t
e

I lb52E dB r~B!lnE
21

1

dq V~q,B!@g t~q!2e t~q!#p,

~A8!

where

g t~q!5E DxE Dy exp2~12t !V~x!2tV~xq1yA12q2!,

~A9!

e t~q!52E Dx Q~x!E Dy Q~2xq2yA12q2!

3exp2~12t !V~x!2tV~xq1yA12q2!.

~A10!

Dx and Dy being the Gaussian measures, and withV the
volumic fraction of parameters having an overlapq with B:

V~q,B!5E dWr~W!d~q2B–W/iBiiWi !. ~A11!

In the above expressions we have assumed for simplicity
potential to be symmetric, although there is no difficulty
considering nonsymmetric potentials in the case of unsu
vised learning. Also, for simplicity let us restrict ourselves
the case of the uniform prior on the unit sphere, in whi
case the above volume does not depend onB. Denoting by
SN the surface of the unit sphere inN dimensions, we have

V~q!5
SN-1

SN
~12q2!~N22!/2 ~A12!

and

I lb52 ln E dq V~q!@g t~q!2e t~q!#p. ~A13!

Consider first the largeN limit with p5aN. The lower
boundI lb can then be computed by the saddle point meth
One has

i lb[ lim
N→`

I lb

N
52 1

2 ln~12q2!2a ln@g t~q!2e t~q!#,

~A14!

whereq satisfies the saddle point equation

]

]q
i lb~q!50. ~A15!

One can see thatg t5g12t , so that the best lower boun
is obtained fort5 1

2 . For a given model, the saddle poin
equation can be solved numerically@setting e t50 in Eq.
~A14! if one consider a smooth unsupervised learn
model#. More explicit calculations can be performed for th
simplest cases. For the Gaussian unsupervised learning
fined in Eq.~60!, with r50, we have

g t~q!5F11t~12t !
~12s2!2

s2
~12q2!G21/2

~A16!
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and for the standard perceptron supervised learning, we h
g t51 and

e t~q!5e0~q!5
1

p
arcos~q!. ~A17!

The resulting bounds are shown on Figs. 2~a! and 2~b!.
Expression~A14! is very reminiscent of the expression

the mutual information obtained with the replica techniqu
see Eq.~41!. If we identify q with AQ, the ‘‘order param-
eter’’ q that appears here must be identified as the Ba
parameter, whereasQ, in the replica approach, is the Gibb
parameter~see Sec. VI!.

The largea limit is obtained by taking the leading beha
ior for q→1. One gets

g t~q!;12t~12t !~12q!^V82&, ~A18!

e t~q!;A12q
&

p
e2V~0!. ~A19!

For largea one then gets that the lower bound on the mut
information behaves for smooth learning as

i lb;
1
2 lnS a

e

4
^V82& D , ~A20!

where we have takent51/2 which gives the largest lowe
bound, and for supervised learning as

i lb; lnS a
e

p
e2V~0!D , ~A21!

whatevert is.
As can be seen starting from Eq.~A13!, the leading term

in the largep limit for N finite, is the one given by expres
sions ~A20! and ~A21!, that is I;N/2 ln p and I;N ln p,
respectively.

2. Upper bound

Again we follow closely@7#. The first step is to conside
the inequality

I ~D;B!<E dB r~B!dDP~DuB!ln
P~DuB!

Q~D!
, ~A22!

which is true for an arbitrary PDFQ~D! ~this follows from
the fact that the difference between the rhs and the lhs ca
written as a Kullback divergence, hence an always nonne
tive quantity!. Taking Q as Q(D)5*dWr(W)Q(DuW),
and rewriting ln@P(DuB)#/@Q(D)# as 2 ln*dWr(W)exp
2ln@P(DuB)#/@Q(DuW)#, the second step consists in upp
bounding the rhs of the above inequality by passing the m
over the data inside the exponential. One gets

I ~D;B!<2E dB r~B!lnE dWr~W!

3exp2E dDP~DuB!ln
P~DuB!

Q~DuW!
. ~A23!
ve

,

s

l

be
a-

r
an

Optimizing with respect toQ, this inequality is a varia-
tional method for bounding the mutual information. For
smooth distribution, hence for the case of smooth unsup
vised learning,P(DuB)5P(XuB) being defined by Eq.~1!,
the optimal choice is simply

Q~DuW!5P~DuW!. ~A24!

In the case of a discontinuity or of supervised learning@that
is, P(DuB)5P(S,XuB) defined by Eq. ~18!#, the ratio
P(S,XuB)/Q(S,XuW) is not bounded. Following@7# we thus
take

Q~DuW!5 )
m51

p

qd~Smujm,B!p~jmuB! ~A25!

with qd a noisy version of the deterministic rule:

qd~Suj,W!5~12d!Q~Sj–W!1
d

2
, ~A26!

whered is a parameter smaller than 1 over which optimiz
tion will be done to get the best possible upper bound.

The upper bound then becomes, for supervised learni

I<I ub[2E dB r~B!ln E dWr~W!

3exp@2pDs~B,W!2pDd~B,W,d!#, ~A27!

whereDs andDd are Kullback divergences related to th
smooth and discontinuous parts of the PDF, respectively

Ds~B,W!5E dj p~juB!ln
p~juB!

p~juW!
~A28!

and

Dd~B,W,d!5E dj p~juB! (
S561

Q~Sj–B!ln
Q~Sj–B!

qd~Suj,W!
.

~A29!

As it is clear from the above equations, the case of smo
unsupervised learning is obtained by simply dropping
term Dd . Conversely, in the case considered in@7# where
there is no correlation between the patterns and the par
eter, the quantityDs is not present~it is zero!. We perform
the rest of the analysis for both discontinuous~supervised!
and smooth~unsupervised! learning, keeping in mind that fo
the latter case the termDd must be dropped.

We note thatDs andDd are simply related to the quant
ties that appear in the lower bounds,g t ande t defined in Eqs.
~A6! and ~A7!, as follows:

Ds52F ]

]t
g tG

t50

~A30!

and

Dd52 lnS 12
d

2D2e0 ln
d

22d
. ~A31!
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The next step in@7# is to upper bound againI ub in such a way
that both the lower and the upper bounds depend in a sim
way on the same quantity~namely,e1/2!. Here we will in-
stead keep the~slightly! better boundI ub, since it can be
easily computed for the particular model family we are co
sidering.

We thus specify now the analysis to the case where
PDF p(juB) has the special structure~2!. Following the
same procedure as for the lower bound in the preceding
tion, we get

I ub52 lnE dq V~q!exp@2pDs~q!2pDd~q,d!#

~A32!

with V given by Eq.~A12!, andDs(q) andDd(q,d) related
to g t(q) and e t(q) at t50 according to Eqs.~A30! and
~A31!.

Consider first the limitN→` with a5p/N fixed. Using
the saddle point method one has

i ub[ lim
N→`

I ub

N
52 1

2 ln~12q2!1aDs~q!1aDd~q,d!,

~A33!

whereq is given by the saddle point equation

]

]q
i ub~q!50. ~A34!

One should bear in mind that the termDd is not present in
the case of smooth learning. For supervised learning, at
given a the optimal choice for d is solution of
(]/]d)Dd(q,d)50, that is,

d~a!

2
5e0~q!. ~A35!

This is an implicit equation ford, sinceq, the solution of Eq.
~A34!, depends ond. One should note thate0(q) is the error
rate that results from using a parameterW having an overlap
q with the parameterB defining the rule. At the optimumDd
takes the nice expression of the binary entropy associate
the error ratee0(q):

Dd52e0~q!ln e0~q!2@12e0~q!# ln@12e0~q!#.
~A36!

As for the lower bound, the saddle point equation can
solved at least numerically for any specific model. For
Gaussian case we have
en
le

-

e

c-

ny

to

e
e

Ds~q!5
1

2

~12s2!2

s2
~12q2!, ~A37!

and for the standard perceptronDs(q)50 and Dd(q) is
given by ~A31! and ~A17!. The upper bounds are shown o
Fig. 2 for these two models.

Consider now the largea behavior. We have to take th
limit q→1. From Eqs.~A30! and ~A31! using Eqs.~A18!
and ~A19! one gets

Ds~q!;~12q!^V82& ~A38!

and

Dd~q!;2 lnS 12
d

2D2A12q
&

p
e2V~0! ln

d

22d
.

~A39!

One then gets the behavior of the upper bound asa goes to
infinity, for smooth learning

i ub;
1
2 ln~ae^V82&! ~A40!

and for supervised learning

i ub;2a lnS 12
d

2D1 lnS ae

p
e2V~0! ln

22d

d D . ~A41!

In this limit the optimal value ofd is given by

a5
2

d ln~2/d!
~A42!

which gives the upper bound

i ub5 ln a1O~ ln ln a!. ~A43!

One can see that both the upper and lower bounds ha
qualitative behavior very similar to that of the mutual info
mation not only at largea but also at finitea. In particular,
when retarded classification occurs, they have a linear
gime over a finite range ofa values~see the related discus
sion Sec. IV B 1!.

As for the lower bound, one can check that the lead
term in the largep limit, for N finite, is correctly predicted by
expressions~A40! and ~A43!, that is, I;(N/2)ln p and I
;N ln p1O(N ln ln p), respectively.
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