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Unsupervised and supervised learning: Mutual information
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We study the mutual information between parameter and data for a family of supervised and unsupervised
learning tasks. The parameter is a possibly, but not necessarily, high-dimensional vector. We derive exact
bounds and asymptotic behaviors for the mutual information as a function of the data size and of some
properties of the probability of the data given the parameter. We compare these exact results with the predic-
tions of replica calculations. We briefly discuss the universal properties of the mutual information as a function
of data size[S1063-651X%99)00403-]
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I. INTRODUCTION be related to the mutual information. In fact, one should be
able to compute the best possible performance from the mu-
We consider the very general problem of finding thetual information without knowing in advance which algo-
structure underlying a set of data, also cakeémples, pat- rithms will allow us to achieve this performance. In the con-
terns or training set The parametric approach assumes thatext of supervised learning, the mutual information is shown
the structure of the probability density functiqRDF the in [7] to have, within the Bayesian framework, the meaning
patterns have been sampled from is known. Only its paramef a cumulative entropic error.
eters have to be determined given the examples. We consider In addition, any model of parameter estimation can be
both supervisecandunsupervisedearning paradigms within interpreted in the neural coding frameworka the duality
the same framework of parameter estimation. The process shown in[8]: the parameter plays the role of the stimulus and
determining the parameters is calladsupervised learning each pattern of the training set is then the activity of a coding
when the goal is to estimate the probability distribution fromcell. In this context, the mutual information characterizes the
the observed data only. In the casesnipervised learning quality of the coding system. Its maximization has been pro-
one is given additional information about the data, that isposed as a possible principle for neural organization in living
each training example is labeled. Several type of labels caanimals(see, e.g.[9,10]) and is related to coding based on
be specified, and we will consider two kinds of labels: aredundancy reductiofsee, e.g.[11,12)).
cluster label, which, in the case of a mixture density, indi- All this motivates the study of the mutual information
cates from which PDF the pattern has been producebtietween data and parameter, which we do in the present
(to which cluster the pattern belongsand aclasslabel, paper for a family of unsupervised and supervised learning
which is a classification of the observed pattémg., itis the tasks. We address the question of the behavior of the mutual
binary classification produced by a teacher perceptiarall information as a function of the dimension of parameter
these cases, the PDF of the data and/or the labels can Bpace, size of data set, and properties of the PDF generating
characterized by a parameter, a vector in a possibly highthe data given the parameter. It is already known that uni-
dimensional space, and the goal is to estimate the parameteersal scaling laws exist for the asymptotic performance of
from the observed data. estimators; e.g., the generalization error decreaspsNaor
Recent results on parameter estimation show thatthe  p>N in the case of smooth distributio4.3]. Our main
tual information between data and parameter is a relevantoncern will be to see what types of universal properties
tool to derive optimal performancefl-5]. Based on exist for the mutual information.
Shannon information quantitigsee, e.g.[6]), it quantifies Some of the results we present are very general, but the
the intuitive idea that our knowledge of the parameter valualetailed calculations and analysis will be done for a family
is limited if we have a finite amount of data. This quantity is of models where the data structure can be characterized by a
independent of any specific algorithm used to estimate theingle symmetry-breaking orientati@along which the pat-
parameter. The best possible estimator of the parameter is thern distribution is nonuniform. Models of this family have
one that is able to extract all this information hidden in thebeen studied extensively with theeplica methodin the
data. If such an estimator exists, its performance should thefnramework of statistical mechani¢$4—17. As we will see,
the self-averagedree energy associated @ibbs learningis
directly related to the mutual information; hence, it contains
*Electronic address: herschko@Ips.ens.fr nadal@Ips.ens.fr httpithe typical properties of the system.

www.Ips.ens.fr-risc/rescomp/ After introducing the general framework of unsupervised
"The laboratory is associated with the CNRSRA 1306, ENS,  learning (Sec. 1), and introducing the mutual information
and the Universities Paris VI and Paris VII. between data and parameters, we show how the computation
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of the information gain in a supervised learning task can berientation. For the family of models we are considering, the

reduced to that of the mutual information in a related unsufprobability of a given patterg can always be written in the

pervised problem. As a result we can then work on a familyform

of parameter estimation tasks that can be seen as unsuper-

vised learning problems, some of them having in addition an 1 &2

alternative interpretation as a supervised learning problem p(&lB)= NG OXH __V()‘))*
e iner _ - N2z | 2

For this family of models we present first exact results

(Sec. Il): a linear upper bound valid for any data size andwhereN is the dimension of the space and

any parameter dimension; an upper bound for the case of

supervised learning also for arly and p; the asymptotic A=B-¢/|B| ©)

behavior of the mutual information for smooth distributions ) )
in the limit of the data size very large compared b, the 1S the overlap between the pattern and the direction. Accord-

parameter dimension, which here is not necessarily large. 19 0 EQ.(2), the patterns have normal, unit variance distri-
the latter case we make use of general results relating tHation, i.e., exptx%/2)/\2m onto theN—1 directions or-
mutual information to théisher information[1,4,5). Finally ~ thogonal toB and the distribution of the overlap in the
we make use of tools, introduced|[ifi] in the context of the =~ Symmetry-breaking direction is given by

standard supervised learning framework, to derive upper and )
lower bounds for both unsupervised learning and supervised P(\)= Lex _ ——V(A)) 4)
learning in the case of patterns correlated with the parameter. 2 2 '

A direct application of the techniques pf] provide the be-

havior of the mutual informations in the large data size limit. The potential(\) characterizes the structure of the data in
In addition, we show that one can get also explicit upper andhe symmetry-breaking direction. In particular,M{\)=0,
lower bounds valid in the largl limit at any given value of the patterns are uniformly distributed in all the directions and
a=p/N (the derivation of these bounds is detailed in theno special orientation can be detected. The potei{al)

@

Appendix. satisfy the normalization condition

Next, in Sec. IV with the relationship mentioned above
and to be detailed below between the.mutual information and J DA exf —V(\)]=1, (5)
the free energy, we make use of replica calculations already

published, giving their interpretation in terms of mutual in- ) . )

formation. We also present new results, on both previoushyVhere DA =d\ exp(-\*/2)/\2m is the Gaussian measure.
studied and not previously studied models. These replica cal#ere and in the following, when not explicitly written, inte-
culations are expected to be valid in the case where the nun§als go from—c to +oo.

ber p of observed patterns is of order of the dimenshonf As justified within the Bayesian and statistical physics
the parameter space, in the limit of very ladyeWe con- ~ frameworks, one has to consideipgor distribution on the

sider first unsupervised learning, with both smooth and disParameter spacgy(B). Convenient choices for detailed cal-
continuous PDF, and we then deduce the relevant informgeulations in specn;\llc models are, e.g., the Gaussian prior
tion quantities for the associated supervised leaming modelg(B) =exp(~B*/2)/N2a or the uniform distribution on the
We compare the predictions of the replica calculations mad&nit sphere. From the point of view of inference, there is,
under the replica symmetry ansatz with the exact bounds arf@ewever, an optimal prior, the one that maximizes the mu-

asymptotic behaviors presented in Sec. IIl. In Sec. V weual information[1,4].
illustrate all these results on specific models. Finally in Sec.
VI we use information quantities to derive bounds on perfor- B. Unsupervised learning

mance of specific estimators. In the Conclusion we disCUSS The mutual informationl (X;B) between the examples

general features of parameter estimation in view of the rez . {he parametdhere the symmetry breaking directi@)
sults obtained on the particular class of models studied in thg, (see, e.9.[6])

present paper.

1(X;B)=H(X)—H(X|B), (6)
Il. MUTUAL INFORMATION where
FOR A PARAMETER ESTIMATION TASK
A. Model family H(X)=-— J dX P(X)In P(X) (7)

We first introduce the general setup from the point of
view of unsupervised learningVe assume that a set of pat- is the pattern entropy according to their probability
ternsX={§”}fL=l is generated by independent samplings

from a nonuniform probability distribution P(X)zf dB p(B)P(X|B) )

p
P(X|B)= Hl p(&“B), (1) and

where B={B,,...,.By} represents the symmetry-breaking H(X|B):_f dB dXp(B)P(X|B)InP(X|B) ©)
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is the equivocation: the pattern entropy conditionaBiaav-  the corresponding cluster distribution. Denoting iy
eraged over the parameter distribution. Here and in the fol— {A#}P_. the set of cluster labels, the model we are con-
lowing, the logarithm are neperian. The unit of the mutualsiderin’é is thus

information is then thenat The mutual information repre-

sents the mean amount of information the dtaconvey p
about the variabld. PAX|B)=T1T (Spuit Spn_1)P(E“|A*B). (12)
For the model family we are considering defined by Eq. n=1

(2), the mutual information can be rewritten
We assumep(&B) to have a smooth overlap distribution

1(X;B)=—=p(V(N))=((InZ(X))), (10 P(A).
In the context of supervised learning, the pattexhare
where given with their cluster labeh={A*}"_,. We will denote

by I 5p(A,X;B) the information the pair of variable@,X)
P gives about the symmetry-breaking afds
Z(X)EJ dBp(B)exp( - 2:1 V()‘M))- 1D Now a patterné coming from the clustep(£AB) gives
a the same amount of information about the direct®dthan a
Here and in all this paper the brackeis:) stand for the PatternA& coming from the clustep(A¢[B). One can thus
average over the overlap distributid®(\), Eq. (4), and Proceed as if one was given the set of pattdiié”} gen-
((-+-)) the average over the pattern distributiB(x), Eq.(g8).  €rated from a single distributioA=+1: one is back to the
One should note that (V(\)) is a positive quantity. In the unsupervised task with the smooth overlap distribution
statistical physics literature, the quantityln Z(X) is the P()\)-, )
“free energy” andZ the “partition function.” From related This writes
studies in the field of statistical physics of disordered sys-
tems, one expects the free energy to be a self-averaging Lap(A,X;B)=1p(X;B). (13
quantity, that is— (1/N) In Z(X) ~({( = (1/N) In Z(X))) in the ) ) ) .
largeN limit. This means that, in this limit, the properties of The direct proof is straightforward using(A£/AB)
the system depend no more on the specific set of pat¥erns = p(&B). _ _
but on the patterns distributio(X) only. It is interesting If the cluster labelA* is not provided, one has an unsu-
that it is precisely this quantity, the averaged free energyPervised learning task equivalent to having the patterns gen-
that appears in the mutual information. This shows that, orerated from the symmetric and smooth mixture distribution:
one hand, it is indeed the mutual information that contains

the typical behavior of the system, and on the other hand, SP(N)=3[P(\)+P(—\)]. (14
that the mean free energy is a relevant quantity even for
finite N. We will denote bylsp(X;B) the information conveyed by

A remark on our notation is in order. Since in the follow- the patterns alone.
ing we will consider relationships between the mutual infor-  Another quantity of interest is the amount of information
mation associated with different, but related, models, we wilconveyed by the cluster labels abdditwhen the patterns,
attach to the mutual information associated with each modegenerated with the probability14), are known, that is,
a subscript referring to the particular probability with which Isp(A;B[X). From information theory one has that the in-
the patterns have been generated. In particular, whenevérmation that the pair of variable@ X) gives about the
considering asmoothpotential (that is, such thal/ is as Symmetry breaking axis is equal to the information that the
regular as neededwe will write the mutual informatioril0) ~ patterns alone gives abo#, plus the information tha\
associated with the modeR) as | (X:B) where the sub- gives abouB when the patterns are already known:
script P refers to the smooth distributioR(\), Eq. (4).

| ap(A,X;B)=15p(X:B)+I5p(A:B|X). (15)

C. Supervised learning As we will see in Sec. IV, the left-hand sidias) of Eq. (13)

We now turn to the case supervised learningasks. We  and the first term of the right-hand sidens) can be com-
will consider two kinds of supervised learning: “cluster puted with the replica technique. From these two calculations
learning” and “class learning.” We show how they are re- one then gets the second term in the rhs. Since the informa-

lated to smooth and discontinuous unsupervised learninfion is a positive quantity, from Eq$13) and(15) it follows
tasks, respectively. that

1. Cluster learning lsp(X;B)<Ip(X;B). (16)
We consider a mixture density made of two smooth

PDF's such that the data will appear as two clusters symme&quationg13) and(15) relating supervised and unsupervised
ric about the origin: the symmetry-breaking direction is theinformations are illustrated in Fig. 5 in the particular case of
direction of the axis joining the centers of the two clusters.a Gaussian overlap distribution.
To each cluster is associated a laBet = 1. Each pattern is Note: If the (single cluster distribution p(&B) is sym-
generated in a two step procedure: first one chooses a clusteretric about the origin, the two clusters are indistinguish-
with equal probability and then the pattern is generated fronable, and one hals,p(A,X;B) =15p(X;B).
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2. Class learning Equationg21) and(22) relating supervised and unsupervised
informations are illustrated in Figs. 8 and 9 for different
choices of the overlap distribution.

One may note that we could have considered class learn-
ing as a particular case of cluster learning where the single
e(fluster distribution is given by @(\)P(\). However, what
justifies distinguishing the two types of supervised learning
is that, as we have seen above, supervised cluster learning is
related through Eq(13) to smoothunsupervised learning,
and class learning is related through E2{l) to discontinu-
ousunsupervised learning.
St=sgr(B-&). 17) In the following, thanks to thes_e relationships.bgetvyeen
supervised and unsupervised learning tasks, we will indiffer-

Denoting byS={S*}? _, the set of class labels, the model e_ntly take ei_ther the s_upervised or the unsup_ervised point of

we are considering I“S thus view according to which is the more convenient or relevant

to the current discussion.

We consider now that the patters={£“}f_; are gen-
erated byp independent samplings from the distribution
p(£B) defined as in Eq(2) with a distributionP(\) asso-
ciated with a symmetrical and smooth potenNg(\). In
addition, for each pattern a teacher provides a class lab
that is a binary classificatioB*= = 1. Since we are consid-
ering models with a single symmetry-breaking orientation,
we assume that thB vector in the pattern distributiof2)
also controls the classification according to

p
P(SX|B)= Hl 0(S*&-B)p(£B). (18 ll. EXACT BOUNDS AND ASYMPTOTIC BEHAVIORS
P

We derive now exact bounds and exact asymptotic behav-
We denote bylp4(S,X;B) the mutual information between jors for the mutual information. Some of these results are
the pair of variable¢S,X) and the parameteB. It has to be  specific to the form(2) of the probability distribution and
noted that contrary to most supervised learning models presther are more general. We begin with a linear upper bound.
viously studied, the patterns themselves carry information
about the teachgithe symmetry-breaking directign
As was pointed out i116], the classification of the pat-

A. Linear bound

tern £ as S automatically implies that the patteBE is clas- The mutual information, a positive quantity, cannot grow
sified as+1. The overlap distribution of a patte®¢, de- faster than linearly in the amount of dgialndeed, it is easy
noted by® P, readily follows from the original on®(\): to show that

OP(\)=20(N\)P(N), (19) 1(X;B)<pli(&B), (24)

wherel; is the mutual information between the parameter

where®(\) is the Heavyside distribution. The correspondingand a single exampléone can check thapl,—| can be
1

potential is written as a Kullback divergence, a quantity always non-
Vep(A\)=% for A<0 negative. However, |; cannot be easily computed in the
op ' general case. We derive the simpler linear upper bound:
V@p()\):Vp()\)_an for A>0. (20)

1(X;B)<—p(V(\)). (25)

The task is thus equivalent to an unsupervised learning ta
with the discontinuous overlap distributioBP()\). This
writes

S{“(his relation is true for alp and allN. We prove the inequal-
ity for the case/\)=0. The extension to the cagr)+0 is
straightforward. As we will see, for the particular family of
models that we are considering, in the lai§elimit this
upper bound becomes in fact identical to the bophg.

In the expressiori6) of the mutual information, the com-
putation of the second term, the equivocatidigX|B), is
straightforward. One gets

lps(S,X;B)=1gp(X;B). (21)

Note: this equality is true only when the overlap distribu-
tion P(\) is symmetric. Otherwise patterns with classifica-
tion S=+1 andS= —1 convey different information about
B, and the supervised informatidpg(S, X;B) is not in gen- oN D
t(ara)l directly related to an unsupervised problem as in Eq. H(X|B):7|n(zﬂe)+§(<)\2>_1)+p<\/)_ (26)
21).

If the class label is not given, one is back to the unsuper- ) )
vised learning problem with smooth potentiB()), for The first term on the rhs _of E(@G_), that is, the entropy of the
which the information ig (X;B). The additional amount of dat&,H(X), is the quantity difficult to compute. However,

information given by the class labels is notee(S;B|X). ~ ©ne can upperbound this entropy by the entropy of the
Similarly to Eqs.(15) and (16) one has Gaussian with the same covariance matrix. The covariance

matrix of the data is easily obtained as
Ips(S,X;B)=1p(X;B)+1p(S;B|X) (22) ) —
(&ren)=6,,(8;+((\)=1)B;B;/[B]?),  (27)
and o
where (.) denotes the average over the parameter distribu-
Ip(X;B)<Ilgp(X;B). (23)  tion. One then has
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HOXO == In(27-re)+§_21 IN[1+((\2)—1) 7],
(28)

where 7; are the eigenvalues of the matiB; /||BJ|*. Put-
ting Egs.(28) and (26) together with Eq.(6), one gets the
linear bound

I(X;B)<—p(V(\))— g(o\z)— 1)

N
+ 21 IN[1+((A2)—1) 7] (29

N| T

Using the property In(xx)=<x together with

N

N
1igsﬁmwé2

=1

i »

one then gets the simpler bouf2b).

In fact the bound29) becomes identical to E@25) in the
asymptotic regimeN—o whenever all the eigenvalues
are of the same order, that isNL/This is, in particular, true
if the prior is spherically symmetric, in which case,
=1/N for all i=1,... N. In these cases, for finith, the
bound(29) reads

<x%—1)
— .
(30

1(X;B)<—p(V(\))— g(<>\2>—1)+ pz—NIn( 1+

In the largeN limit, keepinga=p/N fixed, one has then

Iimﬁll(X;B)s—aW()\)). (3D

N—oo
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[(X;B)~IFisher for p>N

— N | p 12
leisne™ 7 IN| g (V" “(M) |, (33
whereV’(N)=dV(\)/d\. We will see in Sec. IV that this
asymptotic behavior is correctly predicted by the replica cal-
culation for smooth potentials, in the limit— oo first, then
a=p/N—w. In the case of nonsmooth distributions, the
Fisher information matrix does not exigt is infinite). One
can then expect a different asymptotic behavior for the mu-
tual information, as suggested by the bound derived in the
next section.

C. Bound on the class information

We show in this section that the mutual information be-
tween the class and the symmetry-breaking orientation given
the pattern (S;B|X) is bounded:

I5(S;BIX)<InA(p,N), (34
where
min(p,N)
A(pN)= > Cy (35)
k=0

with Cs=p!/[k!(p—K)!].

This bound and its proof are the same as for the informa-
tion capacity of a perceptron studied[ib8,8,19. The argu-
ment is as follows. Since the class is a deterministic function
of the parameteB, when the pattern is given, the mutual
information between the class labels and the parameter is
equal to the conditional entropy of the labels givén

I p(S;B|X)= —ES ((P(SX)INP(SX))),  (36)

From the relationship between mutual information and

free energy, Eq(10), this inequality(25) can also be written
as

—{(In(2)))=<0

that is, the mean free energy is always negative or null.

(32

B. Asymptotic behavior and Fisher information

where  P(S§X)=/dB P(B|X)H2:1®(9‘B.§“) with
P(B|X)=p(B)P(X|B)/P(X). Let us call A(X)<2P the
number of realizable dichotomies, that is, the number of dis-
tinct configurationsS={S*}" _, for which there is at least
one parameteB such thatS*=sgng“-B) for every u
=1,...p. The entropy of the distributioR(S|X) is maxi-
mum when every possiblg has the same probability, that is
1/A(X). Hence

The asymptotic limit usually considered in the context of
statistical parameter estimation is the one where the dimen- (37
sion of the parameter spadé, is given(and not necessarily . . )
|arge, and the number of examp|@is |arge Compared to If the patterns al"e ||.1 “gene.ral pOSItIOﬂ," one baSIC'I’eSU|t
the dimensiorN. For smooth structure, it has been proved[20] is that A(X) is in fact independent of the particular
[1,4,5 that, in that limitp>N, the mutual information in- SampleX, and depends only op and N, being equal to
creases as half the logarithm of the determinant ofiseer ~ A(P,N) defined in Eq(35). As a result one then obtains the
information matrix This matrix is a fundamental quantity in bound(34). If the patterns are not in general position, the
parameter estimation: its inverse is a bound on the covaround remains valid because th&(X)<A(p,N).
ance of any efficient estimat¢€ramer-Rao bound, see, e.g., In the limit N—w and a=p/N fixed, one has the
[6]). Hence, in this asymptotic limit of large data size, one@symptotic behavior
has a simple and explicit link between the mutual informa-
tion and the best possible performance of an estimator. For
our model family, this asymptotic behavior of the mutual lim
information reads N—o

B(SBIX)=((INA(X))).

aln2 if a<2,
aH(1la) if a>2,
~Ilna for large «,

InA(p,N)_

N (39
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whereH(x) = —[x Inx+(1—x)In(1—x)]. This shows in par- IV. REPLICA CALCULATIONS
ticular that forp>N the mutual informatior p(S;B|X) in-
creases at most as ¥N for p large. We will see in Secs.
1D and IV that this behavior is indeed reached for super-
vised learning tasks. This should be contrasted with the be- ) ) ) )
havior for smooth densities, i%lln pIN. A. Replica calculation of the mutual information
In the limit N— with « finite, the calculation of the free
energy{{In Z(X))) in Eq. (10) can be performed by standard
replica technique. This calculation is the same as those re-
In the case of class supervised learning with patterns cofated to Gibbs learning, done [15-17 but the interpreta-
related with the vectoB, it is not clear at this point which tion of the order parameters is different. Assuming replica
asymptotic behavior for the mutual information between datssymmetry, the result for the total mutual informatici0) is
and parameter should be expected. In the case of superviséd follows:
learning, with a PDF for the patterns that does not depend on
the parametep(&B)=p(&), very useful bounds on the mu-
tual informationl (S,X;B) =1(S;B|X) have been derived by
Opper and Hausslgd9,7].
From these bounds one obtains the asymptotic behavior ) 1
for the mutual information. For the standard percepfitbat H(a,Q)=~ E[Q+ IN(1=Q)]—a(V(\))
is, for supervised learning with the deterministic rule and
patterns uncorrelated with the paramgténe main result is
1(S;B|X)~N Inpin the limit p— . _“f DX AX,Q)INA(x.Q) (41)
In the Appendix we apply the techniques|@f to the case
of supervised and unsupervised parameter estimation taskgth
with patterns correlated to the parameter. Quite interestingly,
as we show in the Appendix, these tools introducef7inin
order to extract the largp behavior of the mutual informa-
tion, allow also to derive lower and upper bounds for both
unsupervised and supervised learning in the regime of largex andDy being the Gaussian measure. The order parameter
N and largep for any given value ofa=p/N; that is, in the Q=Q(«) is solution of the saddle point equation
same regime as with the replica calculations. These bounds )
are shown in Fig. 2 for an unsupervised Gaussian and simple i -0 43)
perceptron learningmodels 1 and 6, respectivelyThe de- Q
tails are given in the Appendix, and we present here the main
results concerning the limit of large data size. which reads
One deduces from the bounds that in the lgpdamit, |
~(N/2)inp for smooth unsupervised leaming, and Q =2af DXaA(X'Q) NAX,Q). (a4
~N Inp for supervised learning. Fa¥ large, in the largex 1-Q dQ
limit, one finds for smooth unsupervised learning,
The order parametdd is restricted to th¢0,1] interval and
can be interpreted as the typical overlap between two direc-
tions compatible with the data. The stability of the symmetry
ansatz has already been studied for various specific choices
of potentialsV. The main resulf17] is that the replica sym-
with i(X;B) =limy_.I(X;B)/N, in agreement with the ex- metric solution is stable if

We now compare the previous results with those pre-
dicted by replica calculations.

D. Opper-Haussler bounds

i,

My e

A(x,Q)= J Dy exd —V(yJV1-Q+x\yQ)], (42

e
%In(aZ<V’2))si(X;B)S%In(ae<V’2)) (39

act behavior (33) derived in Sec. Ill, that is,|
~ (N/2)In(p/N){V'?). One can note the quality of the bounds Ol_Q>O (45
in this case. For supervised learning, in the same limit da”

Within this hypothesis of replica symmetry, and for a general
potentialV, one can analyze from E@41) the behavior of
the mutual information (a)=i(«,Q(«a)) as function ofa.
Different behaviors will occur depending on some properties
of the potential. We will illustrate each case with a specific
with i (S,X;B)=Ilimy_..I(S,X;B)/N. In the case of the stan- model in Sec. V.

dard perceptron, that is, fofr=0, we have the better upper A first remark concerns the concavity ofa). One ex-
bound given by Eq(38), which shows that there is no cor- pects the mutual information to be a concave function of the
rection of order Inlrx to the leading behavior. We will see data sizep. This is indeed the case for the mutual informa-
in the next section that the replica calculations, in agreemertton computed with the replica technique under the replica
with the above inequalities, suggests that there is no sucbymmetry ansatz. Sind® satisfies Eq(43), one hadi/d«a
correction for nonzero potentials either. =dilda, so that from Eq(41) one can write

€ .
In( a;e\“o)) <i(S,X;B)<Ina+O(Inlna) (40
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Q | . di(a) symmetrical nature of the space left Br one cannot give
—5 2 IN1-Q)=i(a)—a——. (46)  an estimation of this orientation and the direction of the next
pattern is still unpredictable.
As the |hs is always positive foQ in [0,1], one has It is only atag when correlations_ b_etween examples ap-
[i(a)]/a=di/da. Under the reasonable hypothesis that theP€ar that one is abl_e to make prediction on t_he next sample.
mutual information is a nondecreasing functionaofit fol-  1henQ becomes different from zero, and this may happen

lows thati(«) is concave. From Eq46) on gets also that _either continuously_ or with a jump to a finite valge. Accord-
dQ/da has the sign of-d?%/da? (whereveri admits a sec- N9 0 Eq.(46) the linear regime is left smoothly in the con-
ond derivative, hencedQ/da>0: this is exactly the condi- tinuous case, and with a discontinuity in the slope in the
tion for the stability of the replica symmetric solution. discontinuous case. In any case, the mutual information itself

One can note also the interesting structure of the abovi$ continuous at the transition since the information is
equation(46). From the replica calculation one has that theboundled ny Eq(25), an,dh't cannot declreas]ac(eml?e canlnot
Ihs is the(logarithm of thé volume of the domain in param- N@ve less information with more examplet follows also
eter space in which two directions taken at random have Hwatl the mean free energy must leave his zero level continu-
typical overlap equal t®. If we definej=[di(@)]/da, the ~ OUSY: o o
ths of Eq.(46) is the Legendre transfor{j)=i(a)— aj, _For (A}#Q,_ the plas in the dlstrlputlon ok allows to
which is a function of alone, that is, of the marginal gain of build a nontrivial estimate dB even V‘_"th avery small num-
information for an infinitesimal increase of ber of examples. Then the mutual information cannot satu-

We consider now the behavior of the mutual informationat€ the linear bound. Indeed, in the-0 limit, one finds the
(41) in the small and large regimes according to the replica foIIqwmg behavior for the mutual information whefh)
calculation. #0:

i(@)=—a(VI\))—3a®(\)*+0(a®). (48
B. Unsupervised learning

We consider first the case of unsupervised learning. We 2. Large a limit
derived the behavior for smatt which is true for all poten- We consider now ther—s o limit. First. one can see the
tial. In_ the Iargeg we consider smooth and d's,cont'”uousrelationship between the asymptotic behavior€ef 1 and
potentials showing different asymptotic behaviors. In thei(a) from Eq. (46). If for large a Eq. (43) for Q gives
next section we will deduce the asymptotic behavior for su- o '
p_ervised Ie_arning from the behaviors obtained for unsuper- 1-Q=(aC)™" (49)
vised learning.

for some exponent>0 and constant, then Eq.(46) gives

1. Small @
For some potentials one find3 strictly null from a=0 i (o)~ ZIn(aC)+ V_l_ (50)
up to a critical valuex.>0. This is known asetarded gen- 2 2

eralization in the context of supervised learning1], and ) )

retarded classificatiorin the case of unsupervised learning !N @lready studied models one finds-1 for smooth PDF’s,

[15]. Explicit calculation gives that such retarded classifica-2ndv=2 for standard supervised learning tase, e.g.2]

tion occurs whenevefA)=0, a case illustrated by models 1 a@nd the papers cited in Sec. I\ AThis implies a behavior in

and 2 in the next section. 1/2Ina and Ina for smooth and non smooth potentials, re-
In such case, since from E42) A(x,0)=1 for anyx, spectively. More precisely, the asymptotic behaviors are as

one gets from Eq(41) that the mutual information is strictly follows. , , _
linear in[0,a]: For smooth potentials, a straightforward expansion of

Eqgs.(41) and (44) for Q—1 leads to
i(a)=—a(V(N)). 4
)= et 0 (@)= Ia(V200)]+0(@ . (5D
This is a regime where there is no redundancy in the data:

each datum conveys some information independent from thexam les of smooth unsupervised learning are detailed in
information conveyed by the other data. It corresponds, irb P P 9
ec. V, models 1 and 2.

the context of neural coding, to the regime where full redun- We study now the interesting case of a discontinuity of
dancy reduction can be achievg]12)]. y 9 y

his is in agreement with Eq433) and the bound§39). Two

In this regime one saturates the bou®b): one gains the form
from the data the largest possible amount of information P(M=0, A<M,
about the probability distribution of the patterns. However,
Q=0 means that no estimation of the parameeis pos- P(\) smooth, \>\g, (52)
sible for a<a.. To understand better this seemingly para-
doxical result, consider the simple cade=3 and a overlap lim P(\)=AP>0.
distribution P(\) = &(\). After receiving a first examplég, Ao

we know for sure that the vect& lies in the plane orthogo-
nal to this pattern. We have thus gained a large amount dBy closer inspection of Eq$41) and(44), one finds that in
information about the localization &. However, due to the the limit Q—1, in the region that contributes the most in the
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integrations orx and A, one can replace expV(2) with z 2. Class learning
=yV1-Q+xJQ by ©(z—\g)exp-V(maxhoX]). This In this sectionP(\) is a symmetrical smooth distribution.
yields the leading order in the asymptotic expansion: For smalla, with Ve p defined in Eq(20), one has
i(a)~|n(aAPK) (53) |p5(S,X;B)
, lim —————~—a(Vgp(N))+0(a?),
with N o N
* Ip(S;B|X 57
K:\/Ef Dx xIn jﬁny. (54) IimP(,Tl)Na’an'f‘O(a’z).

N— o

The numerical value of this constantks-1.489.

This behavior(53) is in good agreement with the lower
bound in Eq.(40). For such discontinuous probability, the
rate of information gain given by the patterns is twice the
rate for smooth potentials. This rate is controlled by th
value of the discontinuitA P. An example of unsupervised
learning with discontinuous potential is detailed in Sec. V,
model 3.

The O(«?) is a negative contribution. This is in agreement
with the bound(34), (38).

Consider first the particular case where the patterns have
no statistical dependency in the vec®y that isV(\)=0.
SThen the pattern themselves carry no information algut
and the task is the standard supervised learning task by a
simple perceptron. One gets the asymptotic behavior for the
mutual informationl perceptrok S, X; B) = perceptrokS; B| X):

C. Supervised learning

. 2
We have shown in Sec. Il C, Eqél3), (21), and (22), NI'TOC 'PerceptroﬁS;B|X)/N~|n<“\[;K) (58)

how the information quantities related to supervised and un-
supervised tasks is related. Having computing in the preceqype e js given by Eq.(54), in agreement with the compu-
ing section the asymptotic behawprs in the unsuperwsegztion of the free energy done [&2]. In this case the bound
case, we then deduce the asymptotic behavior for the mutughy) (3g) is asymptotically saturated. This is illustrated in
informations related to supervised learning. We give belowga. v/ model 6
the main results for cluster and class learning. The notations "~ sider now the case where the patterns are correlated
are the same as in Sec. I C. with the directionB, that is, V(1) #0. The distribution(19)
1. Cluster leamin has the form (52) with A\y=0 and AP=2P(0). The

’ g asymptotic behaviors are given by

Let P(\) be a smooth distribution. For smatll one gets

 1pg(SX;B) ( \F o )
- lim ———— | ZKe VO
lim —IAP(/L’X'B) = - a(Vp)+0(a?), v N NeNZFRe )
o (55) 59
. 2,—2V(0)
lsp(A;BIX) _ 2 lim MN% 2Ke—
m—— =~ a((Vp)=(Vsp)) + O(a%) vew N (V/2)

N— o

whereK is given by Eq.54). The information rate given by

and for largea the pair(S,X) behaves as Ia, as for the simple perceptron,

- 1ap(AX;B) but here half of the information comes from the patterns
lim T:% IN(a(VE3))+0(a™b), alone and half from the class information. These results are
N—e illustrated in Sec. V, models 6 and 7.
(56)
Isp(ABIX) | | (V5 1 V. SPECIFIC MODELS
N =51In 2 +O(a™ 7).
N—o (Vsp We illustrate on specific models the different behaviors of

. . . the mutual information discussed in the preceding section.
The amount of information given by the cluster _Iabel €oN-yye compare the predictions of the replica calculations with

verges toward a constant. Then a_Im_os_t all the mformauoqhe exact results from Sec. Ill. Some of the models presented
comes from the patterns alone. This is illustrated in Sec. Vhere have been previously treated in the replica symmetry

m_od_el 4 In the s_peC|aI case of two nonove_rlappmg CIUSteBpproach. For those models, the behavior of the order param-
distributions, that isP(\) andP(—\) are not different from eter can be found in the cited references.

zero together, we hawd/42)=(V;?) and the label informa-
tion converges to zero. With a large number of patterns, the
vector B becomes localized with high accuracy. Now, since
the patterns wittA=—1 andA=+1 are well separated in Model 1: smooth Gaussian learningThe simplest
this model, the label of the patterns become predictable anchodel is obtained for a Gaussian overlap distribution. The
give no additional information. This behavior is illustrated in replica calculation of the free energy has been performed in
Sec. V, model 5. [23]. We use the following parameterization:

A. Unsupervised learning



3352

4.5

I¢s(S,X;B)=
L. (X:B)

40{ LB -
3.5 P

3.0 .

2.5

2.0 1 /

—

—
-
-

e

-===v

1.5 1

Mutual Information /N (units : nat )

0.0

1.0 4

0.5 1

/ -

!
i

4
1/
w

//
g
-

P L
-

_______ Ig(

S;BIX)

——

0.0

5.0

10.0 15.0 20.0 25.0

o

FIG. 1. The smooth unsupervised Gaussian learhi(X;B)
from model 1. For larger it behaves a&% In @. The supervised
class informatiorl 4(S,X;B) and the additional class information
I 5(S;B|X) from model 6 witho= 1//6 andp= 0. Their asymptotic
behavior are respectively; In & and ~3In «. Shown also is the
class information percepiokS; B| X) for the simple perceptron from oy js ~ 1 |n o, This is the same behavior as in model 1.
model 6 and the bound on the class label informatioA(imN)

from Eq. (38). The simple perceptron asymptotically saturates thefree enerav is given bi(In ZY=0 until a = and then the
bound. Both of them have &ln o asymptotic behavior. gy1s g ¥In Z)) o=

P(N)=G(\;p,0)=

The mutual information g(X,B) is shown in Fig. 1 with

1

V2mo

A+p)?
ex;{—%). (60)

parameters valup=0 ando=1/\6.

As (\)=0, retarded classification occurs. For lakgehe

DIDIER HERSCHKOWITZ AND JEAN-PIERRE NADAL

information behaves as % In(a(V{)) in agreement with Eq.
(33). The behavior is similar to the one in model 2 below, for (that is, by following a metastable solutiprwould be that

which we give a more detailed analysis. In Figa)2the

PRE 59

Model 2: smooth mixture distribution.The data are
generated from a Gaussian mixture distribution with an over-
lap distribution given by

N| =

P(A)=GG(\;p,0)= . G(AN;p,0),  (61)

A=

I+

where G is the Gaussian distributiof60) introduced in
model 1. We will see how this particular overlap distribution

is also related to supervised cluster and supervised class
learning(see models 4 and).7

The behavior of the order parametgrand the mean free
energy are given in Fig. 3. The mutual information
lsc(X;B) and the bound25) associated with the distribu-
tion (61) are shown in Fig. 4. In both figures the parameters
arep=1.2 ando=0.5.

Since(\)=0, retarded classificatiomccurs: up to a criti-
cal valuea,, the order paramet&) is null, the free energy is
null and the mutual information saturates the linear bound,
being given by Eq(47). At «. the mutual information leaves
this linear regime. In the large limit, the asymptotic behav-

In the replica symmetry ansatz, the true minimum of the

solution a;— P35 shown on Fig. &). The corresponding be-
havior of the order parameter is shown on Fig)3Q is null
until @, and follows the lower branch untiP3 where it
jumps to the upper branch. In this scenario we thus have
ac=a;.

However, it had been suggested [ib7] that the order
parameteQ can reach the upper branch well beferP;).
As we have seen, the mean free energy cannot be positive
and must be continuousee Sec. IVB It results that the
only possibility of a jump to the upper branch beferéP;)

the free energy follows the path-0a,— P4 (see Fig. 3. In

information as computed with the replica technique is comsuch case the order parameter is null umij, where it
pared with the lowet, and uppet ,, bound from Sec. Il D
computed respectively by Eg#14) and(A33). The bounds

are in very good agreement with the replica calculation.

jumps to the upper branch. This would giwg= a,,.
Model 3: discontinuous Gaussian learningThis case
has been treated if16]. The data are generated from

~ 50
2 -1
= -
- (@) ®) =
0 pRe gt
= 40 //’ ___.—‘7
g Iy o7 InA (p,N)
Z . >/ e _

! o
: e e //’," _______
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FIG. 2. The lowen , and uppet ,, bound on the mutual information from Sec. Il D. These are computed with (Bd4) and (A33),
respectively, and compared with the mutual information computed with the replica tecHajofee the smooth unsupervised Gaussian
learning, model 1 an¢b) for the supervised learning of the simple perceptron, model 6.
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FIG. 3. (a) the order paramete® and (b) the free energy as
functions of «, for the smooth unsupervised mixture learning,
model 2 withp=1.2 ando=0.5, as computed ifBuhot and Gor-
don, 1998 under the replica symmetry ansatz. In the rangexof

values shown on these graphs the mean field equatio®fdq.
(43), accepts several solutiorim particularQ=0 is always a so-
lution). The stability analysignot shown and our results allow to

UNSUPERVISED AND SUPERVISED LEARNING ..
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FIG. 4. As function ofe, in the largeN limit: (i) the mutual
information for smooth unsupervised mixture learning;(X;B)
for model 2, withc=0.5 andp=1.2, together with the associated
linear bound. This information is strictly linear up tq . The spe-
cial structure near visible on the order parameter and the free
energy(figure 3 is not visible here due to the graph scdie. The
supervised Gaussian cluster informatlag (A, X;B) and the clus-
ter information|gg(A;B|X) from model 4.(iii) The supervised
discontinuous class informatio ¢S, X;B) and the class infor-
mation 1 g(S;B|X) from model 7. All these models are linked
together(see Figs. 5 and)9 «(P,)=3.45 anda(Ps)=3.65 are
upper bounds om. (see text, models 4 angd.7

where G is the Gaussian distributio(60). Each pattern is
generated from one of the two clusters with equal probability
and the cluster labeh= =1 is given. Notingl occ(A,X;B)

the information the patterns and their labels give ati®and

I ss(A;B|X) the cluster information, relationd3) and (15)
relating supervised and unsupervised learning are illustrated
in Fig. 5.

Ic(X;B) and Igg(X;B) have been calculated, respec-
tively, in models 1 and 2. All of this information is plotted in
figure 4 foro=0.5 andp=1.2. For smalle, the cluster in-
formation grows. As the estimation of directi@becomes

eliminate some of them. In particular the values giving a positivemore and more accurate with the number of data, the cluster
free energy must be rejected. The solution corresponding to the

absolute minimum of the free energy follows-Qx,— P3, which
gives a.=a4. Another metastable pathway is—0a,—P3 (see
text). @, =2.10, a»,=2.515, anda(P3)=2.527.

the discontinuous overlap distribution obtained from
the truncated Gaussian distribution,@G(\;a,p)
=20(N)G(\;0,p). The mutual information ¢g(X,B) is
given in Fig. 1 withoc=1/\/6 and p=0. The asymptotic
behavior for largex is ~In a, see Eq.53). For large data

L ..(AX;B) =

AGG

I,(GB) = I,CGB)+ 1 (AsBIX)

)

Unsupervised mixture
learning

A N

Supervised mixture
learning

Unsupervised
smooth learning

size, it is the patterns near the discontinuity which give the

largest information about the localization Bf

B. Supervised learning

Model 4: Gaussian cluster learning.As a particular
instance of cluster learning, E(L2), we consider the Gauss-
ian mixture (61) introduced in model 2 in which the two
clustersA=*1 have Gaussian distributions:

Pa(M)=G(A\;p,0), (62

FIG. 5. lllustration of Eqs(13) and (15) for the particular case
of Gaussian cluster learning. The informatibgsg(A,X;B) the
patterns and their labels give abdBitis equal to the information
Ic(X;B) given in an unsupervised smooth learning with examples
drawn from the overlap probabilit¢(\; o, p). This information is
also equal to sum of the informatidgg(X;B) the patterns without
any cluster information give abouw (the unsupervised mixture
information associated to mode), 2plus the cluster information
Isc(A;B|X) the labels convey abouB when the patterns are
known.
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Liec(AXsB) = 1B = LedX5B) + e (AsBIX) 24 ]

FIG. 6. lllustration of Eqgs(13) and (15 for the PDFP(\)
=CC(\;a) (see text, Sec. Il C 2 and model The two clusters are
well separated and all the distributions are smooth.

I
! Iees(SXB)= ==
. . . g P<Vee> /[ IC(X;B)\’ e

/ N g 21
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g
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=
S
=
L]
=
.
=
=
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Lec (S5BIX)
to which the patterns belong becomes more predictable. This Y'Y A P S
explains the decrease of the information that converges to- 0.0 5.0 10.0 15.0 20.0 25.0

wards a constan6). Due to the smooth nature of the PDF

G(A;0,p), the largea supervised information behavior is [, 7. As function ofa the information quantities appearing in
laca(A,X;B)~3 Ina. Fig. 6 for model 5 witha=0.9: | 5cc(A,X;B) (supervised learn-
We show that the linear bound on the mutual informationing), c(X;B) (smooth unsupervise,dtogether with the associated
can be used to obtain bounds on the valye Let «(P4) be  linear bound— p(Vcc), andlcc(A;B|X) (cluster information The
the intersection of the informatiod zgg(A,X;B) with supervised and unsupervised informations have the same
—a(Vgg), that is, the linear bound for the unsupervisedasymptotic behavior- 3In . The class information vanishes be-
information | 5 5(X;B). Since the supervised information is cause the cluster label becomes easily predictable for large
always bigger than the unsupervised one, see(Hg), one

has with Eq. (57). For largea it behaves as- 3 In a. In this limit
ac=<a(Py). (63) the label information of examples near the boundary separat-
ing S=—1 and theS= + 1 example give valuable informa-
This is illustrated in Fig. 4. tion aboutB. The smooth unsupervised pdg(X;B) be-
Model 5: nonover|apping cluster |earning'We con- haves also as% In a. This implies that the total supervised
sider the cluster distributioR5(\) =CC(A\; ) with information| (S, X;B) behaves as-In a.

The special caser=1, p=0 corresponds td/(\)=0,
that is to the standard supervised learning task with a teacher
perceptron. The patterns are symmetrically distributed in all
(64) the directions and are not correlated with the symmetry-
breaking orientation. Therg(X;B)=0 and Ig4S,X;B)
The model is similar to model 4 but now the two clusters do= perceptrokSi B|X). This information is plotted in Fig. 1.
not overlap. Relations between supervised informatiorficcording to Eq.(58) it asymptotically saturates the bound.

(1+a)%? (1+a)\?
—Azex _— .
J2m 2

CC(N;a)=20(N)

lacc(C.X;B), unsupervised smooth informatidg(X;B),  In Fig. 2b) the information as computed with the replica
unsupervised smooth learnihgc(X;B), and the cluster in- technique is compared with the lowky and uppet ,, bound
formation| cc(A;B|X) are illustrated in Fig. 6. from Sec. IlID computed, respectively, by Eq#14) and

The information behaviors and the linear bound associ{A33)- One sees that the replica calculation is in good agree-
ated with distribution(64) are shown in Fig. 7 foa=0.9. ment with the bounds. If one believes that it gives mgieed the
The unsupervised informatid (X;B) shows a similar be- €Xact result, then one can see the very good quality of the
havior as that encountered in model P:c(X;B) and
I acc(C,X;B) converges to the same limit it 3 In a. The (S
cluster information vanishes due to the fact that the clusters [ \
do not overlap(the cluster label becomes predictable with ‘ ‘ - '\ '
high accuracy. SW(B@)' \ :

Model 6: supervised perceptron.The data are gener- ‘ :
ated by the overlap distributio®(\;o,p) considered in :
model 1 and a teacher provide the class ldbelsgnB- &) :
for each patterr of the data set. Relations between super- Supervised Unsupervised Unsupervised
vised informationl ;¢(S,X;B), unsupervised discontinuous perceptron discontinuous learning  perceptron
Informatlonl@_G(X;B)’ calculated in m_Odel 3, unsupervised FIG. 8. lllustration of Eqs(21) and(22) relating supervised and
SmOOt_h Iearnlng (X;B), calcu!ated In m_odell 1, and the unsupervised learning with a Gaussian pdf to unsupervised learning
class lnfor_matloriG_(S;B|X) are illustrated in '_:'g' 8 with a discontinuous distribution. For each mutual information the

These information quantities are shown in Fig. 1 &or g pscript refers to the distribution from which the examples are
=16 andp=0. Also shown is the boun(84) on the class drawn (see text, Sec. I C 2 and mode).6The particular caser
information in the largeN limit. For small o, the class infor- =1, for whichl5(X;B)=0, corresponds to the standard supervised
mation 1 5(S;B|X) almost saturate this bound in agreementiearning task by a perceptron.

XB) = Lg(X5B) = L;(X;B)+1;(S;BX)
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Loes SX5B) = Toga(XsB) = Io(X5B) + 156(S;3BIX) of the mutual information one can derive simple bounds on
L A ‘ ‘ the performance of some specific estimators.
‘ ‘ \ \ The amount of informatioh(X; B) limits the performance
P \ of any estimator. Indeed, since processing cannot increase

/\/\ /\/\ information[6], one has
— T ' 1(J;B)=<I1(X;B). (65)

Supervised class Unsupervised Unsupervised mixture

learning discontinuous learning learning This basic relationship allows to derive interesting bounds
based on the choice of particular estimators. We consider
FIG. 9. lllustration of Egs(21) and (22) relating supervised first Gibbs learning which consists in sampling a direc-
class learning to unsupervised learning with discontinuous distribugion, 3 from the a posteriori  probability P(J|X)
tion. For each mutual information the subscript refers to the distri-_ P(X|3)p(3)/P(X). In this particular case, the differential
bution from which the examples are dravgee text, Sec. I C 2 and entropy of the estimata? and of the parametd are equal,
model 3. H(J)=H(B). If 1-Qj is the variance of th&ibbsestima-
tor, from Eq.(6) and using again the fact that the entropy of
a Gaussian distribution is greater than the entropy of any
distribution with the same variance, one gets the relations for
a Gaussian prior oB

lower bound at any value af, whereas the upper bound is
less precise due to the presence of the term of orderdnin
(see Sec. I D.

Model 7: class learning. The patterns are generated
with the mixture distributionGG(\;o,p) considered in N
model 2, but now a teacher provides the class label for each - EIn(l—QS)sIGibng;B)sl(X;B). (66)
pattern, that isS=sgn@B- &). We notel ;o4 S, X;B) the in-

formation the patterns and their labels give ab8utand  Thege relations together with the linear bou@8) allows to

I6(S,B|X) the label information. The relation&1) and 5 nd the order paramet€), for small a, where this bound
(22) are illustrated in Fig. 9 wherkgge(X;B) in an unsu- s of interest. g

pervise_d disqontinuous learning from e_>§amples dr.awn from  The Bayes estimatoconsists in taking fod the center of
the discontinuous overlap probability@ GG(A;0,p)  mass of thea posterioriprobability. In the limita— o, this

=20(N\)GG();0,p) andlgc(X;B) has been calculated in gisiribution becomes Gaussian centered at its most probable
model 2. value.

_These informations are drawn in _F|g. 4 for=0.5 z_and We can thus aSSUfn@Baye5(3|B) to be Gaussian with
p=1.2. For not too large, the behavior of the class infor- eanq B and variance Q2. Then the first inequality in
mation Igc(S.X;B) and lg(SiB|X) is similar to the be- g, " (g6) with Q, replaced byQ,, and Gibbsby Bayes be-
havior - of their corresponding cluster information ¢, eq'an equality. Using the Cramer-Rao bound on the vari-

| aca(A.X;B) andI.GG(A;.le)‘ For largea this is no MO'®  ance of the estimator one can then bound the mutual infor-
true due to the discontinuous nature of the class Iearnmgmation for the Bayes estimator

The largea behavior is similar to the one encountered in
model 6. N
As the supervised information is always bigger than the | gayed J;B) < Eln[l+ a(V'3(\))]. (67)
unsupervised one, similarly {63) one gets thai(Ps) is an
upper bound or. (see Fig. 4. It has to be noted for super- The rhs is the Fisher informatiof83). For a—c all these
vised learning that in some region, especially for small guantities have the same asymptotic behavior. They are
one can gain more than one bit of information per exampleshown in Fig. 11 from replica calculation, when the data are
one bit from the binary classification plus the information generated with the Gaussian overlap distribut®\ p, o)

conveyed by the patterns themselves. from model 1.
The fact thalQy,, as computed with the replica technique,
VI. BOUNDS FOR SPECIFIC ESTIMATORS asymptotically saturates the Cramer-Rao bound was first

noted in[24]. We have shown here that this manifests itself

Given the dat&X, one wants to find an estimafeof the i the behavior of the mutual information and in the related
parameteB (see Fig. 10 Although this paper is not prima-  quantity | Bayesdefined above.

rily concerned with the question of estimating the perfor-

mance of estimators, we show in this section that making use VIl. CONCLUSION

We have studied the mutual information between data and
B ol pxB Yol pow - parameter in a family of unsupervised and supervised clus-
p(B) tering tasks. We derived exact bounds, exact asymptotic be-

havior, and have compared these results with replica calcu-

FIG. 10. The flow of information. First an orientatioB is  lations.
drawn from aprior distribution p(B). Then, patterns are generated ~ We have restricted the analysis to continuous parameters.
according toP(X|B). In the last process, an estimatidnof the ~ The case of discrete parameters is discussd@Jinin such
original orientation is extracted from the examples. The informationcases the mutual information is upper bounded by the en-
decreases at each step. tropy of the prior distribution on the parameter space, and
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information and explicit upper and lower bounds for the mu-
tual information obtained with the techniques [afl. The
results suggest that the replica symmetry ansatz give the cor-
rect solution. The lower bound is then quite good whereas
the upper bound overestimate the mutual information by a
factor that keeps increasing with the data size. We have also
seen that our linear bound is particularly interesting in the
case of retarded classification f@N~«.. This critical
value ¢« gives the value otr at which the mutual informa-
tion ceases to increase linearly with the amount of data,
and where generalization begins. Contrary to the asymptotic
regime, it can be seen to be related to the Vapnik-
Chervonenkis dimension. This fact is confirmed by the

Mutual Information /N ( units : nat )
~
~
N
\

analysis in[25] of the respective roles dil anddy¢ in a
0.0 5.0 10.0 15.0 20.0 25.0 supervised learning task for a model with# dyc .

a The analysis of the mutual information between data and
parameter we have presented, suggests that it should be in-
teresting to study other models with the same set of tech-
nigues, e.g., non smooth potentials with a singularity which
-1 In(1—Q§) is a lower bound on the mutual information between IS NOt @ simple discontinuity, or_models with a more compli-
the Gibbs estimator and3 (which would be equal to this bound if cated struct_ure such as multilayer networks, or SUPPO”'
the conditional probability distribution of the estimator were Gauss-VECtor machmeéZE_S], which have been recently studied with
ian with meanQ,6 and variance + Q2. Shown also is the analo- Statistical mechanics techniquiv].
gous curve— 3 In(1—Q}) for the Bayesestimator withQ,= Qg .
Qg is computed from Eq(44). In the limit a— o these two latter
curves and the replica informatidig(X;B), all converge toward
the exact asymptotic behavior, which can be expressebhas,
=31+ a(V'?(\))]. This latter expression is, for any an upper
bound for the two Gaussian curves.

0.0

FIG. 11. The mutual informatiohg(X,B) for Gaussian unsu-
pervised learningmodel 1 witho=1/\/6, p=0). It limits the per-
formance of any estimatad, since l(J;B)<I(X;B). The curve
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converges exponentially to this value. APPENDIX: OPPER-HAUSSLER BOUNDS

Most of the results concerning the behavior of the mutual ] . ]
information, observed for this particular family, are “univer-  In this section we derive lower and upper bounds for the
sal,” in that they will be qualitatively the same for any prob- Mutual information following Opper and Hausslef]. We
lem that can be formulated as either a parameter estimatiofill write P(D|B) for the data distribution given the param-
task or a neural coding task. This is in particular the case fogter, whereD is X or (S, X) depending on the particular
the linear bound—that is, the information cannot grow fastefmodel considered.
than linearly in the data size—and the asymptotic behaviors.
For smooth PDF, the large data size=N) behavior forl,
given by theFisher information is | ~(N/2)In(p/N). In the
case of potentials with a discontinuity, or equivalently in the
case of supervised learning of a binary classification, the
asymptotic behavior is~N In(p/N). These behaviors can be :
seen to be valid for any learning machifsee[1,4,5| for the for any O<t<1, with
smooth case[7] for supervised learning N being under-
stood as the number of independent parameters. In particular,
this results in optimal performances, which dependpbxi
and not onp/dyc, wheredy is the Vapnik-Chervonenkis
dimension[26] (see, in particular,13] for the smooth cage

We have obtained bounds and exact asymptotic behaviors ] } ]
by extending the results ifi7] to the case of unsupervised (WherefdD means the integration over the' continuous data
and supervised learning with patterns correlated to the paand the summation over the discrete data, if)afijis holds
rameter. An interesting feature is that, for the supervisedecause
learning tasks where the patterns are correlated with the
symmetry-breaking direction, half of the mutual information
comes from the patterns alone, and half from the class infor-

mation (given the patterns , is the average over the data of the Kullback divergence of
Besides the asymptotic regingelarge, N arbitrary, we P(B|D) relative toQ,(B|D) defined by

have also considered the case of lahgat any given value

of a=p/N. In this regime we have both replica calculations

and exact bounds, in particular, an upper bound for the class

1. Lower bound

Following [ 7], we make use of

1(D;B)=J,(D;B)=J,(D;B) (A1)

Jt(D;B)E—J dBp(B)J dD P(D|B)

j P(DIW) !
XIn | dW p(W) P0[B) (A2)

P(B|D)

Jt—l=fdDP(D)deP(B|D)Ith(T|D)>O,

Qt(B|D)EP(B)[P(D|B)]t/ dep(W)[P(Dlw)]‘-
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Using the convexity of the logarithm, one lower bouidgs

1
by putting in Eq.(A2) the average over the data inside the b= —f dBP(B)mJ'_ldqQ(q,B)[%(Q)—ét(Q)]p.

logarithm. One then makes use of the independency of the (A8)
examples given the parameter, leading to, for adifferent
from 0 and 1, where

l?hbz—f dBp(B)InJde(W)[wt(B,W)]p
(A3)

with, in the case of smooth unsupervised learning, that is

P(D|B)="P(X|B) defined by Eq(1),
wy(B,W)=%(B,W) (Ad)

7t(q)=f DXJ Dy exp— (1—t)V(X) —tV(xg+y~y1—g?),
(A9)

et(q)=2f Dx@(x)f Dy O(—xq-yv1-g?

xexp— (1—t)V(x)—tV(xg+yV1—g?).
and, in the case of class learning, that is fB(D|B) (A10)
=P(S,X|B) defined by Eq(18):
Dx and Dy being the Gaussian measures, and viiththe

wy(B,W)=y(B,W)— &(B,W), (A5)  volumic fraction of parameters having an overtapith B:

where
0(0,8)= f dWp(W)5(q—B-W/|B|W[). (ALD)

— 1-t t
7‘(B’W)=f dp(£/B)" “p(W) (A6) In the above expressions we have assumed for simplicity the
potential to be symmetric, although there is no difficulty in
and considering nonsymmetric potentials in the case of unsuper-
vised learning. Also, for simplicity let us restrict ourselves to
the case of the uniform prior on the unit sphere, in which
case the above volume does not dependBoenoting by
Sy the surface of the unit sphere Mdimensions, we have

&(B,W)= J dép(gB)* Vp(gw)!

xszle)(sg-s)@(—sg-W). (A7)

Sh-
Q(a)= 5= (1-g?) N 2" (A12)
In the particular case where the patteérare independent of
the parameterp(&W)=p(£), one recovers the supervised and
learning case considered[idi]l: y,(B,W)=1 ande,(B,W)
is the probability thaB andW disagree on the classification _ _ b
of an example. Note tha, is the normalization factor that lo=—=In | dg@(a)[y(a)—ela)]" (AL3)

makes the mixturegp(&B)* " Yp(gW)Yy, a well defined

PDF for & Consider first the larg®\ limit with p=aN. The lower
We perform the rest of the analysis working with Egs.Poundl, can then be computed by the saddle point method.

(A3) and (A5) for both supervised and smooth unsupervisedone has

learning, keeping in mind that for the latter case the teym

must be dropped. It will appear that, precisely, the ﬂ:

S 1 5
asymptotic behavior will be governed by propertiesypfin o hl,lflo N 2In(1=a9 ~alnln(a)~e(@)].
the case of smooth learning, and&fin the case of discon- (A14)
tinuous learning, leading respectively to thid/2)Inp and
N In p behaviors. whereq satisfies the saddle point equation

Since the quantity,(B,W) — &(B,W) lies in[0,1], for p
large the integral in Eq(A5) is dominated by thé&V such ii|b(q)=0. (A15)

that y,— € is close to 1. Similarly t¢7], one will get thatf aq

the volumeV(B) of W such thaty,(B,W)—¢(B,W)=1
—5 behavesaaséd(B) as 6—0 thent for Iargept the lower One can see thag,=v,_;, So that the best lower bound
' is obtained fort=%. For a given model, the saddle point

bound behaves adinp, with d=dB p(B)d(B). For the equation can be solved numericallgetting ,=0 in Eq.

particular model family we are considering, this coefficient NV i h ised | .
and in fact the detailed behavior of the bound for both the( ) if one consider a smooth unsupervised learning
limit p large and the limif large withp/N fixed, are easily model. More explicit calculations can be performed for the

derived. as we show now simplest cases. For the Gaussian unsupervised learning de-
We thus take into account the special struct@efor the fined in Eq.(60), with p=0, we have
PDF p(£&B). In this case the quantitieg; and ¢, depend

only on the scalar product of the two parametecs,
=B-W/||B|||W|. We have

-

Y(Q)=[1+t(1-1) (A16)
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and for the standard perceptron supervised learning, we have Optimizing with respect taQ, this inequality is a varia-
v=1 and tional method for bounding the mutual information. For a
smooth distribution, hence for the case of smooth unsuper-

1 vised learning;P(D|B)="P(X|B) being defined by Eq(l),
€(0) = €o(q) = —arcogq). (AL7)  the optimal choice is simply
The resulting bounds are shown on Fig&)2and 2b). Q(D|W)="P(D|W). (A24)

Expression(Al4) is very reminiscent of the expression of ) o )
the mutual information obtained with the replica techniques!n the case of a discontinuity or of supervised learr{ithgt
see Eq.(41). If we identify q with \/Q, the “order param- IS, P(D|B):P(S’X|B_) defined by Eq.(18_)], the ratio
eter” q that appears here must be identified as the Baye5(S:X|B)/Q(S,X|W) is not bounded. Followinf7] we thus
parameter, wherea®, in the replica approach, is the Gibbs @K€
parametefsee Sec.

P
The largea limit is obtained by taking the leading behav- _
ior for g—1. One gets (Dw) ,El 9:(5.B)p(£]B) (A25)

Y(@)~1—t(1—t)(1—q){V'?), (A18)  with gs a noisy version of the deterministic rule:
v2 )
e(q)~V1-g—e V. (A19) As(SIEW)=(1-5)O(SEW) + 5, (A26)

For largea one then gets that the lower bound on the mutuaiWhere d is a parameter smaller than 1 over which optimiza-
information behaves for smooth learning as tion will be done to get the best possible upper bound.

The upper bound then becomes, for supervised learning,
i~ 3 In( aE<V’2)), (A20)
4 |s|ubz—J dBp(B)IanWp(W)
where we have taket=1/2 which gives the largest lower X ex — pD4(B,W)— pDy(B,W, 5)] (A27)
bound, and for supervised learning as s B
where Dy and Dy are Kullback divergences related to the

ip~In age—V(0)> (A21) smooth and discontinuous parts of the PDF, respectively:
7T 1
- p(&B)
whatevert is. Dy(B,W)= d§p(§| B)In p(§|W) (A28)
As can be seen starting from E@\13), the leading term
in the largep limit for N finite, is the one given by expres- and
sions (A20) and (A21), that is|~N/2Inp and I~NInp,
respectively. f O (Sé-B)
Dy(B,W,8)= | d B O(Sé-B)IN——=++.
d(BW.0)= | dEp(B) 2, O(SEB)IN —gy
2. Upper bound (A29)

Again we follow closely{7]. The first step is to consider

the inequality As it is clear from the above equations, the case of smooth

unsupervised learning is obtained by simply dropping the
(D|B) term Dy. Conversely, in the case considered[#] where

|(D:B)<f dB p(B)dD P(D|B)In o) (A22)  there is no correlation between the patterns and the param-

eter, the quantityD, is not presentit is zerg. We perform

the rest of the analysis for both discontinudssipervised

which is true for an arbitrary PDR(D) (this follows from ; . e
the fact that the difference between the rhs and the lhs can d smooth{unsupervisediearning, keeping in mind that for
written as a Kullback divergence, hence an always nonnegé— e latter case the terfly must pe dropped. .
tive quantity. Taking @ as Q(D)=[dWp(W)Q(D|W), _ We note thatZ_)s and Dy are simply related to the_ quanti-
and rewriting IP(D|B)]/[Q(D)] as —InfdWp(W)exp ties that appear in the Iower boundg,ande, defined in Egs.

—In[P(D|B)]/[ Q(D|W)], the second step consists in upper(AG) and (A7), as follows:

bounding the rhs of the above inequality by passing the mean J
over the data inside the exponential. One gets D=— [E %} (A30)
t=0
I(D;B)S—f dBp(B)Inf dWp(W) and

o o
(A23) Dd=—ln(1—§)—eolnm. (A31)

P(D|B)



PRE 59 UNSUPERVISED AND SUPERVISED LEARNING .. 3359

The next step ifi7] is to upper bound again, in such a way 1(1-02)?

that both the lower and the upper bounds depend in a simple Dy(a)=5 ——(1-0%), (A37)
way on the same quantifnamely, €1,). Here we will in- o

stead keep théslightly) better boundl ,, since it can be

easily computed for the particular model family we are con-2nd for the standard perceptrdi(q)=0 and Dy(q) is

given by (A31) and(Al7). The upper bounds are shown on

sidering. ;
We thus specify now the analysis to the case where thE19: 2 for these two models. _
PDF p(£B) has the special structur€). Following the Consider now the large: behavior. We have to take the

same procedure as for the lower bound in the preceding seliMit —1. From Egs.(A30) and (A31) using Eqs.(A18)
and (A19) one gets

tion, we get
Dy(a)~(1-a)V'?) (A38)
L=~ [ da0@ext—pD,(@)—pDy(a,0)] s
(A32) and
with Q given by Eq.(A12), andDg(q) andDy(q, ) related S V3 P
to y,(q) and €(q) at t=0 according to Eqs(A30) and Dd(q)~—ln(1—E)—\/l—q7e‘v(°) In>—.
(A31). (A39)

Consider first the limitN—c with o= p/N fixed. Using

the saddle point method one has One then gets the behavior of the upper bound @®es to

lub infinity, for smooth learning

= lim —21In(1— g% + aDy(q) + aDy(q, 5),
N—ee (A33) w3 IN(ae(V'?2)) (A40)
whereq is given by the saddle point equation and for supervised learning
2 ) ae 2—6
< - L _° 2oV
70 fup(0) =0. (A34) i~ —aln|1-5|+In| —e In—s ) (A41)

One should bear in mind that the terfy is not present in o . o

: : . In this limit the optimal value of5 is given by
the case of smooth learning. For supervised learning, at any
given « the optimal choice for § is solution of

. 2
(0196)Dy(q,6) =0, that is, - -
‘ *= 5In(2/9) (A42)
S(a) B
7~ cla). (A35)  \hich gives the upper bound
This is an implicit equation fop, sinceq, the solution of Eq. iw=Ina+0(nlna). (A43)

(A34), depends ord. One should note thady(q) is the error
rate that results from using a parameférthaving an overlap
g with the parameteB defining the rule. At the optimurby
takes the nice expression of the binary entropy associated
the error ratesy(Q):

One can see that both the upper and lower bounds have a
ualitative behavior very similar to that of the mutual infor-
ation not only at largex but also at finitea. In particular,

when retarded classification occurs, they have a linear re-
Dy=— eo(q)IN €o(q) —[1— €o(q) TIN[ 1= €o(q) - g_ime over a finite range ok values(see the related discus-
(A36) sion Sec. IVB ). .
As for the lower bound, one can check that the leading
As for the lower bound, the saddle point equation can beéerm in the large limit, for N finite, is correctly predicted by
solved at least numerically for any specific model. For theexpressiongA40) and (A43), that is, | ~(N/2)Inp and |
Gaussian case we have ~N Inp+O(NInlIn p), respectively.
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